纯电动汽车电驱动系统传动装置的振动噪声机理与抑制策略【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


主要内容如下:

(1) 电驱动系统振动噪声机理分析

本文首先对电驱动系统的振动噪声机理进行了深入分析,从振动噪声的源头以及传递路径两个方面入手,研究了电驱动系统中各种类型的激励及其传递特性。对于斜齿轮噪声,分析了齿轮啮合刚度、传递误差、啮合冲击、齿面摩擦等内部激励,以及轴承刚度激励、电机转矩脉动和径向电磁力等外部激励的产生机理。同时,考虑路面随机激励对传动系统的影响,探讨了这些激励在齿轮传动系统中的传递过程及其对系统振动噪声的影响。此外,本文还分析了磁固耦合效应带来的系统振动与噪声问题,指出电磁激励通过与结构耦合引起的系统振动是影响NVH(噪声、振动与声振粗糙度)性能的关键因素之一。

通过分析这些激励的特点及其相互作用,本文对电驱动系统的振动噪声特性进行了深入研究,明确了各类激励源对系统整体振动和噪声性能的影响规律。这些研究为后续提出的振动噪声抑制方法提供了理论依据。

(2) 多源激励电驱动系统仿真平台构建

为了更好地理解电驱动系统在多种激励下的振动噪声特性,本文基于子结构合成法和有限元法构建了多源激励的电驱动系统仿真平台。首先,建立了电机的电磁场有限元模型,用于获取电机转矩脉动和径向电磁力激励。接着,建立了电驱动系统壳体结构的有限元模型,通过模态分析获得了壳体的仿真模态,并进行了模态试验以验证仿真结果的准确性。此外,建立了齿轮传动系统的耦合动力学模型,以获得齿轮啮合的传递误差激励。

基于上述三个模型,本文最终构建了一个多源激励的联合仿真平台,用于分析电驱动系统的振动与噪声特性。在仿真平台中,使用了“三轴承”式模型,以提高对传递误差、转矩脉动以及径向电磁力等激励的分析精度,并结合系统实际结构进行建模与验证。这一仿真平台能够准确预测电驱动系统在多种激励条件下的振动与噪声特性,从而为振动噪声的有效抑制提供支持。

(3) 多源激励下的振动噪声预测与验证

基于多源激励的联合仿真平台,本文分析了传递误差、转矩脉动和径向电磁力等激励,以及这些激励的不同阶次对电驱动系统振动与噪声特性的影响。通过对转矩脉动与径向电磁力不同阶次激励下电机轴上轴承及其壳体节点处的振动加速度幅值的计算,本文预测了系统在多源激励条件下的振动情况。同时,通过引入速度均方根(RMS)值来衡量系统的辐射噪声,分析了齿轮传递误差、转矩脉动和径向电磁力等多源激励下系统壳体表面节点的平均法向速度的均方根值,以此来预测系统的辐射噪声情况。

为了验证仿真平台的有效性,本文还进行了电驱动系统的台架试验,比较仿真结果与试验结果,发现两者之间具有较好的一致性。通过这一验证过程,进一步确认了仿真平台在振动噪声预测方面的可靠性,为后续振动噪声抑制措施的有效性评估提供了坚实的基础。

(4) 传动装置振动噪声抑制方法研究

本文针对电驱动系统振动噪声抑制问题,研究了多种抑制方法。其中,基于齿轮微观修形的方法被应用于齿轮传动系统的振动噪声抑制中。通过Smith切片法获取齿轮啮合副的传递误差和齿面载荷分布,本文以传递误差波动量最小、齿面载荷最小及其不同权重的综合为优化目标,基于粒子群算法对齿轮修形参数进行多目标优化,获得了帕累托最优解。优化后的齿轮啮合特性大幅改善,齿轮传动系统的振动噪声水平显著降低。

此外,本文还研究了基于转子斜极的转矩脉动抑制方法。通过分析转子斜极的工作原理和其对电磁转矩的影响,确定了斜极角度的优化方法。基于仿真平台分析了不同工况下不同斜极段数对转矩脉动的影响,最终确定了2段斜极为最佳方案,并通过台架试验验证了该方案对转矩脉动的抑制效果。试验结果表明,转子斜极方法能够显著降低电驱动系统中的转矩脉动,从而有效减少系统振动和噪声。

(5) 电驱动系统振动噪声台架及整车道路试验验证

为了进一步验证振动噪声抑制方法的有效性,本文设计并开展了电驱动系统的振动噪声台架试验以及整车道路试验。提出了一种用于电驱动系统振动噪声测试的汽车传动系统公共控制平台,并在不同工况下对系统进行了振动噪声测试,包括恒转速、恒转矩加速、空载滑行、馈电滑行、下线检测等工况。通过对比分析采用齿轮微观修形和转子斜极方法前后的壳体振动加速度值和近场噪声阶次分布,验证了振动噪声抑制方法的有效性。

此外,以搭载优化后的电驱动系统的某国产纯电动汽车为平台,在缓加速和滑行工况下测得了车内噪声阶次贡献和阶次分布情况,结果表明优化后的电驱动系统对整车的NVH性能有明显改善,特别是在低频噪声控制方面表现出显著优势。研究结果为电驱动系统的集成设计和优化提供了理论和技术支持,具有重要的社会经济价值和广阔的工程应用前景。

 

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from scipy.signal import welch

# 传递误差计算
def transmission_error(gear_params):
    """
    计算齿轮传递误差
    gear_params: 齿轮参数 (齿数, 模数, 齿形修正系数等)
    """
    tooth_count, module, correction_factor = gear_params
    error = (module * correction_factor) / tooth_count
    return error

# 齿轮修形参数优化
def gear_optimization(objective, initial_params, bounds):
    """
    齿轮修形参数优化
    objective: 目标函数
    initial_params: 初始参数
    bounds: 参数边界
    """
    result = minimize(objective, initial_params, bounds=bounds, method='SLSQP')
    return result.x

# 振动加速度谱分析
def vibration_spectrum(signal, fs):
    """
    振动加速度谱分析
    signal: 振动信号
    fs: 采样频率
    """
    f, Pxx = welch(signal, fs, nperseg=1024)
    plt.semilogy(f, Pxx)
    plt.xlabel('Frequency [Hz]')
    plt.ylabel('PSD [g^2/Hz]')
    plt.title('Vibration Spectrum')
    plt.show()

# 示例数据
g_params = (20, 2.0, 0.1)  # 齿轮参数 (齿数, 模数, 齿形修正系数)
initial_params = [0.1, 0.2]  # 初始修形参数
bounds = [(0, 1), (0, 1)]  # 修形参数边界

# 计算传递误差
te = transmission_error(g_params)
print(f"传递误差: {te}")

# 优化齿轮修形参数
opt_params = gear_optimization(lambda x: transmission_error((g_params[0], g_params[1], x[0])), initial_params, bounds)
print(f"优化后的齿轮修形参数: {opt_params}")

# 振动信号分析
fs = 1000  # 采样频率
signal = np.random.randn(10000)  # 示例振动信号
vibration_spectrum(signal, fs)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值