✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅论文数据下载:工业工程毕业论文【数据集】
✅题目与创新点推荐:工业工业毕业论文【题目推荐】
(1) 无卡轴单板旋切生产线现状分析及改进目标
无卡轴单板旋切生产线是胶合板生产中的关键环节之一,其加工效率直接影响着胶合板的整体生产效率和成本。目前,国内外的单板旋切技术多为半自动化,面临的主要问题包括生产效率低、危险性高、人工依赖大、生产成本高等,这些因素制约了胶合板的批量化生产,降低了我国木材产业在国际市场中的竞争力。为了提升这一生产线的整体效率,本文首先对无卡轴单板旋切生产线的结构进行了系统化的分析。利用SolidWorks软件构建了三维模型,详细明确了该生产线的工作原理和工序流程。通过对生产线的分析,生产线被划分为截断找圆系统、旋切加工系统和分级码垛系统三个主要部分。每个系统均存在一定的瓶颈与不足,需要进行进一步优化。
截断找圆系统中,现有的木材挂载和找圆方式多为人工操作,不仅效率低下,还存在较高的安全隐患。旋切加工系统的结构设计较为传统,尤其是原木旋切与单板剪切环节中的机械结构未能很好地满足现代化的精益生产要求,设备磨损率较高,故障频繁,影响了整体生产效率。在分级码垛系统中,分级过程存在不稳定、重复率高、无法精准分类的问题,导致生产线在分级与码垛阶段的效率显著降低。因此,本文的目标是通过对各个系统的优化,实现生产线在截断、旋切与分级等方面的自动化和智能化,从而提升整体生产效率。
(2) 生产线结构改进与优化设计
在截断找圆和旋切加工系统的改进中,优化的第一步是对木材的挂载方式和找圆工艺进行创新设计。为了实现更加高效的截断挂载,本文提出了一种基于平面传送模型的截断挂载方式。通过合理调整挂载钩的倾角和安装距离,可以确保木材的自动化装载更加顺畅。与传统的人工找圆方式相比,本文提出了一种无人化找圆理论,通过对找圆去材长度和木段周长之间关系的分析,采用视觉传感器结合自动化控制,能够实现木材找圆的无人化操作,进一步减少人力依赖。
针对原木旋切与单板剪切装置,本文对旋切加工系统中的结构进行了改进。为降低旋切加工中原木的旋切风险,增加了一套检测复位装置,用于及时检测木材在旋切过程中是否出现异常,并在必要时进行复位处理,防止设备损坏。在剪切装置中,本文对剪切刀具进行了结构改良,使得刀具更加耐用且在剪切过程中产生的摩擦力减少,从而提高了刀具的使用寿命,降低了生产成本。
为了实现自动化程度的进一步提升,本文设计了一种自动上料和自动去芯的装置。在自动上料方面,通过感应装置与电机联动的方式,实现木材的定点、定位布置,并在合适的时机将木材送入旋切设备中。对于去芯装置,则采用了一种橡胶轴来顶替传统的人工去芯操作,通过机械化装置自动将剩余的木芯移出生产线,极大地提高了工作效率,并减少了工人在危险区域的暴露时间,确保了安全性。
(3) 新型分级码垛系统的开发与仿真验证
分级码垛是单板生产线中的重要步骤之一,其目的是根据单板的质量和特性进行分类和有序堆放,以便后续的胶合板生产能够顺利进行。在本研究中,为了提高分级和码垛的效率,本文开发了一种新型的分级码垛系统。该系统主要由图像视觉识别单元和机械码垛执行机构组成。
首先,针对单板的分级特点,本文设计了一套视觉识别系统,通过图像色差进行识别,以确保分级的准确性。利用图像采集和处理技术,采用摄像头对单板表面进行实时扫描,通过分析单板表面的RGB图像和色差特征,识别单板的表面质量,从而确定其分级类型。为了确保识别的精确度,本文还利用函数对采集的RGB图像进行了XYZ(彩色图像)和LAB转换,并提取了传送带的LAB阈值,通过图像滤波技术有效地消除干扰因素,确保了每一张单板都能够被全面、逐个识别。
在机械执行部分,为了实现自动化分级码垛,本文设计了一种曲柄摇杆执行机构,通过平面四杆机构的传送特性,合理确定了各构件的尺寸比例关系,以便确保分级结构能够达到所需的位置和动作精度。同时,借助Adams软件对所设计的分级结构进行了运动学仿真,验证了设计机构在实际运行中的可行性和稳定性。仿真结果表明,曲柄摇杆执行机构能够稳定、准确地完成分级码垛任务,整个系统的动作流畅性和位置精度均满足设计要求。
为了进一步验证视觉识别系统的可行性和精度,本文搭建了实验平台,对单板的特征提取、质量等级区分和识别精度进行了实验验证。通过对实板图像的逐一分析,采用像素点累计总和等价于覆盖面积的方式,确定了单板的等级,并结合机械响应距离的计算,确保分级码垛系统能够按照质量等级对单板进行依次、依质、有序的码垛。实验结果表明,视觉识别系统能够准确区分不同质量等级的单板,整体识别精度达到95%以上,符合工业化生产的要求。
通过对无卡轴单板旋切生产线的系统化改进与优化设计,本文的研究有效提高了生产线的自动化和智能化水平。通过对截断、旋切和分级码垛各个环节的优化,不仅降低了对人工的依赖,减少了生产过程中的危险性,还显著提升了生产效率,为胶合板生产行业提供了一种高效、经济的生产解决方案。
import simpy
import random
# 单板旋切生产线仿真 - 无卡轴旋切工序模拟
class VeneerPeelingLine:
def __init__(self, env, num_cutters, processing_time):
self.env = env
self.cutters = [simpy.Resource(env, capacity=1) for _ in range(num_cutters)]
self.processing_time = processing_time
def peel(self, cutter_id):
yield self.env.timeout(self.processing_time)
print(f'Cutter {cutter_id} completed peeling at time {self.env.now}')
# 自动去芯装置模拟
class CoreRemovalSystem:
def __init__(self, env, removal_time):
self.env = env
self.removal_time = removal_time
def remove_core(self):
yield self.env.timeout(self.removal_time)
print(f'Core removed at time {self.env.now}')
# 分级码垛系统模拟
class GradingStackingSystem:
def __init__(self, env, grading_time, stacking_time):
self.env = env
self.grading_time = grading_time
self.stacking_time = stacking_time
def grade_and_stack(self):
yield self.env.timeout(self.grading_time)
print(f'Grading completed at time {self.env.now}')
yield self.env.timeout(self.stacking_time)
print(f'Stacking completed at time {self.env.now}')
# 主环境设置
def setup(env, num_cutters, processing_time, removal_time, grading_time, stacking_time):
peeling_line = VeneerPeelingLine(env, num_cutters, processing_time)
core_removal = CoreRemovalSystem(env, removal_time)
grading_stacking = GradingStackingSystem(env, grading_time, stacking_time)
for cutter_id in range(num_cutters):
env.process(cutter_work(env, cutter_id, peeling_line, core_removal, grading_stacking))
def cutter_work(env, cutter_id, peeling_line, core_removal, grading_stacking):
while True:
with peeling_line.cutters[cutter_id].request() as request:
yield request
yield env.process(peeling_line.peel(cutter_id))
yield env.process(core_removal.remove_core())
yield env.process(grading_stacking.grade_and_stack())
# 仿真环境启动
random.seed(42)
env = simpy.Environment()
env.process(setup(env, num_cutters=3, processing_time=7, removal_time=3, grading_time=5, stacking_time=4))
env.run(until=120)