智能网联汽车经济性驾驶的信号灯控路口车路协同优化控制【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 信号灯控路口智能网联汽车能耗与动力学模型构建

在智能网联汽车(Intelligent Connected Vehicles, ICV)应用于信号灯控路口的场景中,理解和建模车辆的能耗与动力学行为是实现经济性通行车速优化的基础。首先,建立网联电动汽车模型,综合考虑车辆的动力系统特性、电池性能、车辆重量、空气阻力、滚动阻力等因素,对车辆在不同速度和加速度下的能耗进行精确模拟。通过引入车辆动力学模型,可以动态反映车辆在加速、减速及匀速行驶过程中的运动状态变化。此外,结合交通环境的复杂性,考虑到信号灯的周期、相位以及交通流量的动态变化,构建一个多维度的耦合模型,将车辆的能耗与交通信号信息紧密结合。

在模型构建过程中,还需定义常见的路口通行车速控制方法,如红灯停止、绿灯起步、黄灯过渡等不同情境下的车速调节策略。通过选择典型的交通场景进行分析,可以深入研究不同车速控制方法对车辆节能效果的影响,以及车辆在不同交通信号下的速度变化规律。例如,在红灯等待期间,车辆的怠速能耗、启动时的加速能耗与匀速行驶时的能耗存在显著差异,这些差异直接影响整体的能耗优化效果。通过系统的场景模拟与数据分析,揭示信号灯控路口中网联电动汽车节能控制的影响机理,为后续的经济性通行控制方法研究提供坚实的模型与理论基础。

(2) 车辆队列动态响应与节能车速优化策略设计

在实际的信号灯控路口交通环境中,车辆队列的存在是影响经济性通行控制效果的重要因素。传统的节能控制方法在面对复杂的车辆队列时,往往因忽视车辆间的相互影响和动态响应特性而导致节能效果的衰退。因此,设计一种能够动态预测队列消散时间并融合驾驶员动态响应特性的车速优化方法显得尤为重要。

本研究首先考虑了异质车辆队列的构成,包括不同类型、不同驾驶行为的车辆对队列动态的影响。通过分析驾驶员在不同交通情境下的动态响应特性,如反应时间、加速度变化等,设计了一种基于队列消散时间预测的模型。该模型能够准确预测在信号灯变化时,车辆队列的解散过程,为车速优化提供动态调整的依据。接着,采用动态规划算法设计全局最优的车速轨迹优化方法,将节能车速优化问题的静态约束与动态约束因素解耦,实现车速的全局优化。

为了确保优化后的车速轨迹能够在实际行驶中被精准跟踪,并保证行驶的安全性,本文引入了线性时变模型预测控制(Linear Time-Varying Model Predictive Control, LTV-MPC)算法。这种控制算法能够实时调整车速,确保车辆在整个行驶过程中保持在最优的节能轨迹上,同时避免因过度优化导致的行驶不稳定或安全隐患。最终,形成了增强型路口节能驶入控制(Enhanced Eco-Approach Control, EEAC)策略,该策略通过自适应规划,实现了节能与安全通行车速的动态平衡,显著提升了信号灯控路口中的车辆能耗经济性。

(3) 基于事件驱动的实时车速优化与多路口协同控制

信号灯控路口的交通环境具有高度的动态性和复杂性,不同路口之间的时空耦合关系进一步增加了经济性通行控制的难度。针对前车与信号灯要素时空尺度不一的问题,导致现有经济性通行控制方法在特定场景下的泛化能力较差,本文提出了一种基于事件驱动的节能驾驶控制(Event-Driven Energy-Efficient Driving Control, EEDC)策略,以实现能效最优的车速实时优化。

首先,深入剖析城市驾驶场景的特征,设计了一种基于规则的车辆驾驶事件分类方法。通过将驾驶过程中的关键事件进行分类,如信号灯变化、前车减速、道路拥堵等,简化了节能驾驶优化问题的复杂性。随后,推导出满足状态量与控制量约束的优化问题解析计算方法,定义了一套约束触发机制,使得在特定事件发生时,能够即时触发相应的车速优化控制策略。

在此基础上,构建了一个滚动优化框架,通过实时监测和预测交通环境的变化,动态调整车速优化策略,确保车辆在不同的驾驶事件下始终保持在最优的节能状态。同时,考虑到多路口之间存在的时空耦合关系,本文进一步提出了一种分层式多路口通行车速优化架构。通过采用A*算法规划多路口高效通行的绿灯窗口周期和时间序列,结合迭代动态规划算法,设计了一种能够协调节能、高效、舒适以及电池寿命延长等异构目标的车速优化方法,提出了多路口经济性通行(Multi-Intersections-Based Eco-Approach and Departure, M-EAD)策略。该策略能够在多路口场景下,实现满足多维约束和异构目标需求的通行车速规划,显著提升了整体交通系统的能效和通行效率。

(4) 智能网联汽车经济性驾驶试验平台的开发与实车验证

为了确保所设计的经济性路口通行控制方法能够在实际交通环境中有效应用,开发一个智能网联电动试验汽车平台和车联网信息交互系统是必不可少的步骤。本研究构建了一个完整的智能网联汽车经济性驾驶试验平台,集成了车辆动力学模拟、车联网通信模块、交通信号信息接收与处理模块等关键组件。通过该平台,能够在真实的城市开放道路环境中,进行经济性驾驶控制策略的实车应用和系统验证。

试验平台的开发过程中,重点考虑了测试目标的实现和系统的可扩展性。首先,选择了合理的城市开放道路作为测试场景,涵盖了多种典型的信号灯控路口情况,如高峰时段的车辆排队、非高峰时段的车流稀疏等。制定了详细的测试方案与流程,确保每一项经济性通行控制策略都能够在不同的交通情境下得到充分验证。通过实车测试,评估EEDC和M-EAD策略在实际应用中的节能效果、通行效率以及系统的稳定性和可靠性。

实车试验结果表明,所提出的经济性通行控制方法在实际交通环境中表现出良好的节能潜力和通行效率提升效果。具体而言,EEDC策略在单一路口场景下,能够显著降低车辆的能耗,同时保证安全和舒适的通行体验;而M-EAD策略在多路口场景下,不仅提升了整体交通系统的能效,还有效减少了车辆的通行时间和碳排放。通过系统的实车验证,证明了本文提出的经济性路口通行控制方法的实用性和有效性,为智能网联汽车在城市交通中的节能减排应用提供了重要的技术支持和理论

import numpy as np
import matplotlib.pyplot as plt

# 参数设置
TIME_STEP = 0.1  # 时间步长
TOTAL_TIME = 60  # 总模拟时间
NUM_STEPS = int(TOTAL_TIME / TIME_STEP)

# 信号灯周期设置(绿灯30秒,红灯30秒)
GREEN_TIME = 30
RED_TIME = 30
SIGNAL_CYCLE = GREEN_TIME + RED_TIME

# 车辆初始状态
vehicle_speed = 0.0  # 初始速度(m/s)
vehicle_position = 0.0  # 初始位置(m)
acceleration = 0.0  # 初始加速度(m/s^2)

# 车辆动力学参数
MAX_ACCEL = 2.0  # 最大加速度(m/s^2)
MAX_DECEL = -3.0  # 最大减速度(m/s^2)
DESIRED_SPEED = 15.0  # 期望速度(m/s)

# 模拟数据记录
speed_history = []
position_history = []
time_history = []

def get_signal_state(current_time):
    """获取当前信号灯状态"""
    cycle_time = current_time % SIGNAL_CYCLE
    if cycle_time < GREEN_TIME:
        return 'GREEN'
    else:
        return 'RED'

def optimize_speed(current_speed, current_signal):
    """简单的车速优化策略"""
    if current_signal == 'GREEN':
        # 如果绿灯,尽量加速到期望速度
        if current_speed < DESIRED_SPEED:
            return min(current_speed + MAX_ACCEL * TIME_STEP, DESIRED_SPEED)
        else:
            return current_speed
    else:
        # 如果红灯,减速停车
        if current_speed > 0:
            return max(current_speed + MAX_DECEL * TIME_STEP, 0)
        else:
            return 0.0

# 主模拟循环
for step in range(NUM_STEPS):
    current_time = step * TIME_STEP
    signal = get_signal_state(current_time)
    new_speed = optimize_speed(vehicle_speed, signal)
    
    # 更新车辆状态
    acceleration = (new_speed - vehicle_speed) / TIME_STEP
    vehicle_speed = new_speed
    vehicle_position += vehicle_speed * TIME_STEP
    
    # 记录数据
    speed_history.append(vehicle_speed)
    position_history.append(vehicle_position)
    time_history.append(current_time)

# 绘制车速随时间变化图
plt.figure(figsize=(12, 6))
plt.plot(time_history, speed_history, label='Vehicle Speed (m/s)')
plt.xlabel('Time (s)')
plt.ylabel('Speed (m/s)')
plt.title('Economic Driving Speed Optimization at Signal-Controlled Intersection')
plt.legend()
plt.grid(True)
plt.show()

 


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值