深度学习在近红外光谱建模与模型传递中的应用研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)基于 Transformer 的光谱建模方法

在近红外光谱(NIRS)建模领域,经典定性分析方法存在诸多弊端,如建模流程复杂,需要耗费大量时间和精力去尝试不同的特征提取方法,且依赖于先验知识进行大量试错。同时,深度学习模型虽然具有强大的自动特征学习能力,但往往对超参数的选择较为敏感,不同的超参数设置可能会导致模型性能的较大差异。

为应对这些问题,提出了基于 Transformer 的光谱建模方法,即 Spectra Tr 模型。该模型的核心在于采用注意力机制取代传统的卷积运算来获取光谱特征。注意力机制能够使模型自动聚焦于光谱中的关键信息,从而更精准地捕捉光谱的特征,而不像卷积运算那样受限于固定的卷积核大小和步长等参数设置。在此基础上,Spectra Tr 模型利用多层感知机建立起特征与类别之间的映射关系,实现对光谱类别的准确预测。

在中国食品药品检定研究院提供的光谱数据集中,针对 7 类药物和 18 类药物光谱的定性分析实验中,Spectra Tr 模型展现出了卓越的性能。其预测准确率分别高达 100% 和 99.52%,相较于传统的 PLS_DA、SVM、SAE 和 CNN 等方法具有明显优势。在公开药物光谱数据集的测试中,即使在未使用预处理算法的情况下,Spectra Tr 模型的分类准确率依然达到了 96.97%,比其他对比方法高出 2.73% 至 34.85%。这充分证明了 Spectra Tr 模型在光谱分析方面的出色表现,它能够直接从原始光谱数据中自动提取有效的特征,无需依赖复杂的预处理算法,并且对模型超参数的变化具有较强的鲁棒性,极大地简化了光谱建模的流程,提高了建模效率和准确性。

(2)基于卷积神经网络和迁移学习的光谱建模方法

现有的近红外光谱定量分析方法面临着信号解析能力弱以及仪器间台间差异大的难题。为解决这些问题,首先引入了多尺度融合和残差机制,构建了名为 MSRCNN 的网络。

多尺度融合机制使得模型能够同时学习到光谱在不同尺度下的特征信息,从而更全面地捕捉光谱的细微差异和变化趋势。残差机制则有助于缓解深度网络中的梯度消失问题,使得模型能够更深层次地学习光谱特征,提高模型的表达能力。在单台仪器收集的药品和小麦的公开光谱数据集上进行实验,MSRCNN 取得了优异的成绩,其 RMSE(均方根误差)和 R2(决定系数)分别达到 2.587、0.981 和 0.309、0.977,相较于传统的 PLS、SVM 和 CNN 等方法,在预测准确性和稳定性方面都有显著提升。

为了进一步解决光谱仪器的台间差异问题,设计了四种模型迁移策略,旨在将在一台仪器上建立的 MSRCNN 模型迁移到其他光谱仪器上并保持良好的预测性能。经过实验对比发现,利用 30 个其他仪器样本对迁移模型进行微调,同时迁移卷积层和全连接层的策略最为有效。在此策略下,模型在新仪器上的 RMSE 和 R2 分别为 2.289、0.982 和 0.379、0.965。而且,随着参与微调的样本数量的增加,模型在不同仪器上的预测性能还能够进一步提高。这表明通过合理的网络结构设计和迁移学习策略,可以有效地克服光谱仪器台间差异对模型性能的影响,提高模型的通用性和适应性,为近红外光谱在多仪器场景下的定量分析提供了可靠的解决方案。

(3)基于 DCGAN 和迁移学习的半监督光谱建模方法

在实际应用中,获取大量有标签的光谱数据往往成本高昂,这导致深度学习模型在训练时容易出现过拟合现象,同时仪器间的台间差异问题也依然存在。为解决这些困境,提出了基于 DCGAN(深度卷积生成对抗网络)和迁移学习的半监督光谱建模方法。

首先,在无标签光谱数据上利用 DCGAN 网络进行训练。DCGAN 中的生成器和鉴别器通过不断地生成和鉴别光谱数据,以一种博弈的方式学习光谱的通用特征表征。生成器尝试生成尽可能逼真的光谱数据,而鉴别器则努力区分真实光谱和生成光谱,在这个对抗过程中,两者不断优化,使得生成器能够学习到光谱数据的潜在分布特征,从而为后续的模型训练提供丰富的无标签数据信息。

然后,将训练好的鉴别器网络及其参数迁移到特定的光谱分析任务中,并使用少量有标签光谱数据对网络参数进行微调。在实验中,当仅有 50 个标签样本参与迁移时,DCGAN - CNN 模型的 RMSE 和 R2 分别为 0.605 和 0.872,相较于直接建模的 CNN、PLS、SVR 等方法表现更为出色。当进一步将训练样本数量提升到 200 时,DCGAN - CNN 的 RMSE 和 R2 分别达到了 0.192 和 0.989,预测精度得到了极大的提高。而且,将 DCGAN - CNN 模型迁移到其他三台仪器上时,其 RMSE 分别为 0.563、0.712 和 0.749,展现出了良好的跨仪器预测能力。这充分说明所提出的方法有效地降低了深度学习模型对标签样本数量的依赖,不仅提升了模型的预测精度,还成功解决了模型在不同仪器上应用时面临的台间差异问题,为近红外光谱建模在数据有限且多仪器环境下的应用提供了创新的思路和有效的手段。

 

% 加载近红外光谱数据
data = load('nir_data.mat'); % 假设数据已存储为.mat 文件,包含光谱数据和对应的标签
nir_spectra = data.spectra; % 光谱数据矩阵,每行代表一个样本的光谱
labels = data.labels; % 样本标签向量

% 数据预处理(示例:归一化)
nir_spectra = normalize(nir_spectra);

% 划分训练集和测试集
cv = cvpartition(size(nir_spectra, 1), 'HoldOut', 0.2); % 80%用于训练,20%用于测试
idxTrain = training(cv);
idxTest = test(cv);
X_train = nir_spectra(idxTrain, :);
y_train = labels(idxTrain);
X_test = nir_spectra(idxTest, :);
y_test = labels(idxTest);

% 构建简单的卷积神经网络模型(示例)
layers = [
    imageInputLayer([size(X_train, 2) 1 1])
    convolution2dLayer(3, 16, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 32, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    fullyConnectedLayer(64)
    reluLayer
    fullyConnectedLayer(numel(unique(y_train)))
    softmaxLayer
    classificationLayer];

% 设置训练选项
options = trainingOptions('adam', 'MaxEpochs', 50, 'InitialLearnRate', 0.001, 'Shuffle', 'every-epoch', 'ValidationData', {X_test, y_test}, 'ValidationFrequency', 10, 'Verbose', false);

% 训练模型
net = trainNetwork(X_train, y_train, layers, options);

% 在测试集上进行预测
YPred = classify(net, X_test);

% 计算准确率
accuracy = sum(YPred == y_test) / numel(y_test);
disp(['Accuracy: ', num2str(accuracy)]);

% 评估模型性能(示例:计算 RMSE)
y_pred = predict(net, X_test);
rmse = sqrt(mean((y_pred - y_test).^2));
disp(['RMSE: ', num2str(rmse)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值