✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
在服务计算领域,服务质量(QoS)是衡量服务性能的关键指标,它包括吞吐量、响应时间等非功能属性参数。随着服务提供商数量的增加,如何从众多相似服务中选择最合适的服务成为了一个挑战。传统的QoS预测方法主要受到服务推荐中协同过滤的启发,通过收集相似用户或服务的历史信息来预测未知服务的QoS值,但这些方法容易受到数据稀疏度的影响。因此,本研究提出了基于多特征深度学习的服务质量预测模型,以提高预测的准确性和效率。
(1)基于用户-服务交互图的深度学习服务QoS预测模型
现有的QoS预测方法往往没有充分利用历史QoS值和用户之间的联系,未能挖掘用户和服务之间的深层联系,导致预测准确度不高。为了解决这一问题,本研究提出了一种基于用户-服务交互图的深度学习服务QoS预测模型。该模型通过构建用户-服务交互图,刻画用户与服务之间的直接调用和间接交互关系,并通过相似度计算得到用户/服务特征向量集。设计了双流深度卷积神经网络,利用高效深度卷积单元学习样本规律,并基于相似用户/服务特征向量集进行QoS预测。同时,通过自适应更新用户/服务特征向量,以提升预测准确度
。
(2)基于分阶段多尺度特征融合和个体评价的服务QoS深度学习预测模型
目前的方法多使用单一尺度特征来预测QoS值,导致特征信息不完整,预测准确度低。针对这一问题,本研究提出了一种基于分阶段多尺度特征融合和个体评价的服务QoS深度学习预测模型。该模型融合三种尺度特征:全局、局部和个体特征。通过非负矩阵分解获得全局和个体特征矩阵,提取全局和个体特征。基于距离相似度计算获取相似用户和相似服务,并形成用户和服务的局部特征。通过深度神经网络分阶段逐步融合三种尺度特征进行特征处理和学习,并在每个阶段中使用个体评价对该阶段的特征进行修正,以更准确预测服务QoS值
。
(3)基于特征映射和特征推理的深度学习服务QoS预测模型
现有方法通过用户/服务的索引提取特征或利用矩阵分解构造特征,导致特征在低维空间的变换中丢失很多信息,特征可靠性不高。为了解决这一问题,本研究提出了一种基于特征映射和特征推理的深度学习服务QoS预测模型。该模型构建特征映射和推理网络,将用户/服务的特征映射到二维空间,捕获用户/服务的深层特征,提高特征的可靠性。利用升维后的用户特征与服务特征进行特征融合,以提高QoS预测质量
% 假设已经加载并预处理了数据集,包括用户特征、服务特征和历史QoS值
% 用户特征矩阵
userFeatures = ...;
% 服务特征矩阵
serviceFeatures = ...;
% 历史QoS值
historicalQoS = ...;
% 构建深度学习模型
layers = [
featureInputLayer(size(userFeatures, 2) + size(serviceFeatures, 2), 'Normalization', 'none', 'Name', 'input')
fullyConnectedLayer(128, 'Name', 'fc1')
reluLayer('Name', 'relu1')
fullyConnectedLayer(64, 'Name', 'fc2')
reluLayer('Name', 'relu2')
fullyConnectedLayer(32, 'Name', 'fc3')
reluLayer('Name', 'relu3')
fullyConnectedLayer(1, 'Name', 'output')
regressionLayer('Name', 'regressionOutput')
];
% 配置训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 32, ...
'InitialLearnRate', 0.01, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropPeriod', 125, ...
'LearnRateDropFactor', 0.2, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练模型
net = trainNetwork([userFeatures, serviceFeatures], historicalQoS, layers, options);
% 使用训练好的模型进行QoS预测
predictedQoS = predict(net, [userFeatures, serviceFeatures]);
% 计算预测的均方误差
mseError = mean((predictedQoS - historicalQoS).^2);
disp(['Mean Squared Error: ', num2str(mseError)]);
% 可视化训练进度和预测结果
figure;
subplot(1,2,1);
plot(trainingInfo.TrainingLoss);
title('Training Loss');
subplot(1,2,2);
plot(historicalQoS(end-100:end), 'b');
hold on;
plot(predictedQoS(end-100:end), 'r--');
legend('Actual QoS', 'Predicted QoS');
title('QoS Prediction');
xlabel('Sample Index');
ylabel('QoS Value');