✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)轮轨周期性磨耗主要体现为车轮谐波磨耗和钢轨波磨,这两种现象对列车的正常运行及维护提出了严峻挑战。在实际运营中,通过对三种不同车型镟修前后的车轮进行检测,研究团队详细记录了车轮谐波磨耗的振动频率与轮径、速度以及轴距之间的关系。进一步地,通过分析车辆构架的模态振型和频率,研究人员探讨了构架与车轮谐波磨耗激励频率之间的联系。研究表明,轮轨激振频率不仅受到轴距的影响,还与轨道类型密切相关。当车轮出现初始缺陷时,在每次与轨道接触过程中都会在缺陷位置产生额外的磨耗。这种磨耗会沿着踏面圆周以波浪形方式逐渐扩展,直到波浪形磨耗头尾相连,形成初期的车轮谐波磨耗。随着列车继续行驶,初期的车轮谐波磨耗将加剧轮轨间的振动,导致磨耗从低阶向高阶演变。一旦磨耗幅值和阶次达到特定水平,轮轨间将发生冲击振动,从而加速车轮谐波磨耗的发展。此外,在进出站或大坡度区段,车辆频繁加减速会破坏轮轨之间的稳定黏滑关系,增大轮轨接触斑处的滑动区域,进而造成钢轨波磨。而在小半径曲线区段,由于轮对的一阶弯曲、垂向和横向载荷等因素作用,会导致轮轨接触区车轮相对钢轨横向滑动,这也是钢轨波磨形成的一个重要原因。
(2)为了深入理解轮轨周期性磨耗的发生机理,研究者们建立了考虑干摩擦因素的轮对黏滑振动非线性动力学模型,用以模拟系统运动中的黏着、滑动和碰撞过程。该模型揭示了轮对黏滑振动的机制及其运动行为,表明在低频区域内,系统呈现出大幅振荡与微幅振荡交替变化的特点,这是一类典型的周期性颤振运动。这种颤振运动使得轮轨接触斑内的黏滑区域发生剧烈变动,促使轮轨接触区车轮相对于钢轨横向滑动,从而使横向蠕滑力呈现周期性的变化。最终,这些动态变化诱发了轮轨周期性磨耗的发生。通过这种方式,研究不仅加深了对磨耗机理的理解,也为后续提出有效的抑制措施提供了理论基础。
(3)基于Kalker简化理论,研究者推导了轮轨滚动弹性接触下的蠕滑力,并建立了轮对沿直线轨道运动的方程,通过坐标变换得到了相应的蠕滑率。以此为基础,利用车辆-轨道耦合系统动力学模型,分析了轮轨周期性磨耗对整个车轨系统动力响应的影响。结果显示,在存在车轮谐波磨耗的情况下,轮轨垂向力随磨耗幅值增加而增强,但速度和阶次的关系并非简单递增。转向架构架和轴箱的振动峰值接近于车轮谐波磨耗的激励频率,且振动幅度随磨耗幅值的增大而明显增加。尤其是在高阶磨耗条件下,激励频率容易激发车轮的固有弯曲模态,从而加剧轮轨振动,影响两者间的接触状态,使蠕滑率/力显著提升。同时,扣件刚度对蠕滑特性的影响与速度之间存在关联;在轮轨周期性磨耗的影响下,轮轨动态相互作用力表现出随速度增长的趋势,尤其在高速状态下,车轮出现了跳轨现象。值得注意的是,尽管钢轨波磨对轮轨横向力的影响较小,但它对纵向蠕滑力受速度的影响较为显著。相比之下,钢轨波磨对横向蠕滑力的影响并不起主导作用,而且残余波磨无论是在轮轨动态相互作用力还是轮轨间蠕滑特性方面的影响都相当有限。
% 车辆-轨道耦合系统动力学分析程序
% 初始化参数设置
vehicleMass = 80000; % 车辆质量 (kg)
wheelDiameter = 0.92; % 车轮直径 (m)
axleDistance = 2.5; % 轴距 (m)
trackStiffness = 4e6; % 轨道刚度 (N/m)
dampingCoefficient = 2e3; % 阻尼系数 (Ns/m)
% 加载轮轨周期性磨耗数据
addpath('data');
[harmonicWearData, railWaveWearData] = loadWearData();
% 定义仿真时间范围
timeSpan = [0 10]; % 秒
initialConditions = [0; 0]; % 初始条件: 位移和速度
% 建立车轮-轨道系统的动力学方程
function dydt = vehicleTrackSystem(t, y)
% 解释输入变量
% t: 当前时间点
% y: 状态向量 [位移; 速度]
% 提取状态变量
displacement = y(1);
velocity = y(2);
% 计算外力
externalForce = calculateExternalForce(displacement, velocity, harmonicWearData, railWaveWearData);
% 动力学方程
acceleration = (externalForce - dampingCoefficient * velocity) / vehicleMass;
dydt = [velocity; acceleration];
end
% 计算外部作用力函数
function force = calculateExternalForce(displacement, velocity, harmonicWearData, railWaveWearData)
% 根据当前位置和速度计算外部作用力,包括轮轨周期性磨耗的影响
% 这里假设有一个复杂的算法来确定作用力
force = trackStiffness * displacement + randn() * 100; % 示例随机力
end
% 运行仿真
[t, y] = ode45(@vehicleTrackSystem, timeSpan, initialConditions);
% 绘制结果
figure;
subplot(2,1,1);
plot(t, y(:,1));
title('位移随时间变化');
xlabel('时间 (s)');
ylabel('位移 (m)');
subplot(2,1,2);
plot(t, y(:,2));
title('速度随时间变化');
xlabel('时间 (s)');
ylabel('速度 (m/s)');
% 数据加载函数定义
function [harmonicWear, railWaveWear] = loadWearData()
% 假设这里有一些代码用于加载实际的轮轨周期性磨耗数据
harmonicWear = rand(1, 100); % 示例数据
railWaveWear = rand(1, 100); % 示例数据
end
% 其他辅助函数定义...