负泊松比结构吸能盒设计的参数化建模与多目标优化研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)负泊松比结构力学模型建立与性能分析

依据负泊松比结构独特的蜂窝结构特性,对双箭头型负泊松比结构展开深入研究。通过等效性能的方法,精准探究其元胞拓扑结构与宏观性能之间的内在联系,成功构建了微观拓扑结构参数与等效弹性性能的力学模型。这一模型犹如一把钥匙,开启了理解负泊松比结构微观与宏观性能关系的大门,为后续研究奠定了坚实的理论基石。在静力学特性研究方面,详细分析了结构在静止受力状态下的应力、应变分布规律,明确了其承载能力和稳定性的关键因素。面内压缩特性的研究则聚焦于结构在平面内受到压缩力时的变形模式和力学响应,揭示了其独特的压缩行为和能量吸收机制。通过对能量吸收特性的剖析,量化了负泊松比结构在承受冲击或载荷时能够吸收的能量大小,以及能量吸收过程中的效率和稳定性,为其在车身设计中的应用提供了关键的性能数据支持。例如,在汽车保险杠、车门等部件的设计中,了解负泊松比结构的这些性能特点,有助于优化部件的结构设计,使其在碰撞时能够更有效地吸收能量,保护车辆和乘客的安全,同时实现轻量化的目标,提高汽车的燃油经济性和整体性能。

(2)基于新型梁单元的负泊松比结构仿真模型构建与验证

针对传统负泊松比结构研究方法中存在的精度差或效率低的问题,创新性地提出了一种新型 Timoshenko 大变形梁单元。这种梁单元巧妙地结合了全局坐标系和绝对节点坐标方程,使其在复杂系统的大变形模拟中表现出色。通过精心选取形函数策略和采用接近近似法,有效攻克了模型计算过程中容易出现的数值问题,为负泊松比结构的仿真研究提供了强大的工具。将该新型梁单元应用于双箭头型负泊松比结构的仿真分析中,分别构建了二维单胞元、二维多胞元和三维多胞元的仿真模型。通过与传统梁单元和六面体单元模型的仿真结果对比研究,清晰地展示了新型梁单元模型在保证仿真精度的同时,显著提高了计算效率。例如,在模拟负泊松比结构在复杂受力情况下的变形过程中,新型梁单元模型能够更准确地捕捉结构的变形细节和应力分布情况,且计算时间大幅缩短。为进一步验证模型的可靠性,进行了样件的准静态压缩实验。实验结果与仿真结果高度吻合,有力地证明了基于新型 Timoshenko 梁单元的负泊松比结构仿真模型的准确性和有效性,为后续的结构优化设计和工程应用提供了可靠的虚拟测试平台,使得在实际制造之前能够通过仿真手段对负泊松比结构的性能进行全面评估和优化,降低研发成本和风险。

(3)负泊松比结构优化设计方法与应用

鉴于负泊松比结构在汽车零件设计中的应用潜力,以及现有优化方法的局限性,提出了一种基于参数化模型的优化设计方法。针对双箭头型负泊松比结构的特点,首先建立微观结构的参数化模型。这一模型通过将结构的关键几何参数和材料属性参数化,能够快速、准确地生成不同参数组合下的结构模型,极大地提高了建立仿真模型的效率和准确性。接着,采用最优拉丁方试验设计法对参数进行合理的取值组合,生成一系列的样本点,并通过有限元仿真得到这些样本点对应的结构性能数据。然后,运用响应面法对这些数据进行拟合,构建出参数化模型的响应面模型,该模型能够近似地描述结构性能与参数之间的复杂函数关系。最后,利用优化算法对微观结构的几何设计参数和厚度等参数进行优化,以改善结构的宏观力学性能。例如,在优化汽车发动机支架的负泊松比结构设计时,通过该方法对结构的胞元形状、尺寸和壁厚等参数进行优化,使支架在满足强度和刚度要求的同时,实现了轻量化的目标,提高了发动机的工作稳定性和汽车的整体性能。通过成功应用该方法实现了负泊松比结构的最优化拓扑、形状和厚度设计,满足了不同的设计需求,为其在汽车工业中的广泛应用提供了有力的技术支持。

(4)新型负泊松比结构吸能盒的设计与性能研究

吸能盒作为汽车碰撞安全的关键部件,其性能的优劣直接影响汽车的耐撞性。传统吸能盒设计方法在优化空间上存在一定的局限性,为此,将传统空心吸能盒与负泊松比结构吸能内芯有机结合,首次提出一种新型负泊松比结构吸能盒。这种创新设计充分发挥了负泊松比结构优异的能量吸收能力,显著提高了吸能盒的整体性能。在给定初始速度、恒定碰撞速度和整车正面碰撞三种工况下,对传统吸能盒、泡沫铝填充吸能盒和负泊松比结构吸能盒进行了全面的性能对比研究。通过对比分析不同吸能盒的能量吸收、碰撞力、比吸能、压溃位移和部件质量等关键参数,清晰地展示了新型负泊松比结构吸能盒的优势。例如,在能量吸收方面,负泊松比结构吸能盒能够在相同的碰撞条件下吸收更多的能量,有效减少碰撞对车辆其他零部件和乘员的损伤。同时,系统地研究了不同碰撞速度、基体材料以及负泊松比结构胞壁的夹角、厚度、宽度、长度等微观结构参数对吸能盒性能的影响规律。基于这些研究成果,成功实现了针对某车型的负泊松比结构吸能盒的多目标优化,在保证吸能效果的前提下,进一步优化了吸能盒的质量和成本。这一研究为负泊松比结构吸能盒的设计和应用提供了全面的理论基础和实践指导,推动了汽车碰撞安全技术的发展,有望在未来的汽车设计中得到广泛应用,提高汽车的安全性能和市场竞争力。

 

from abaqus import *
from abaqusConstants import *
from caeModules import *
from odbAccess import *

# 创建新的模型数据库
myModel = mdb.Model(name='NegativePoissonRatioModel')

# 创建部件
s = myModel.ConstrainedSketch(name='sketch', sheetSize=10.0)
# 这里假设根据双箭头型负泊松比结构的几何形状绘制草图,以下为简单示意
s.Line(point1=(0, 0), point2=(1, 0))
s.Line(point1=(1, 0), point2=(1, 1))
s.Line(point1=(1, 1), point2=(0, 1))
s.Line(point1=(0, 1), point2=(0, 0))
# 使用草图创建三维可变形部件
part = myModel.Part(name='NegativePoissonRatioPart', dimensionality=THREE_D,
                    type=DEFORMABLE_BODY)
part.BaseSolidExtrude(sketch=s, depth=1)

# 创建材料
material = myModel.Material(name='Material-1')
# 假设定义一些简单的材料属性,实际应根据负泊松比结构的材料特性准确设置
material.Elastic(table=((100000, 0.3),))  # 弹性模量和泊松比

# 创建截面属性并分配给部件
section = myModel.HomogeneousSolidSection(name='Section-1', material='Material-1')
part.SectionAssignment(region=part.sets['SOLID'], sectionName='Section-1')

# 创建装配体
myAssembly = myModel.rootAssembly
instance = myAssembly.Instance(name='Instance-1', part=part, dependent=ON)

# 创建分析步
myModel.StaticStep(name='Step-1', previous='Initial', description='Static analysis step')

# 定义边界条件
# 假设固定部件的一个面,以下为简单示意
face = instance.faces.findAt(((0, 0, 0),))
myModel.DisplacementBC(name='BC-1', createStepName='Step-1', region=face,
                       u1=SET, u2=SET, u3=SET)

# 定义载荷
# 假设在部件的一个面上施加压力载荷,以下为简单示意
face_load = instance.faces.findAt(((1, 1, 1),))
myModel.Pressure(name='Load-1', createStepName='Step-1', region=face_load,
                 magnitude=100)

# 创建网格
myAssembly.regenerate()
elemType = mesh.ElemType(elemCode=C3D8, elemLibrary=STANDARD)
myAssembly.setElementType(regions=(instance,), elemTypes=(elemType,))
myAssembly.seedPartInstance(regions=(instance,), size=0.1)
myAssembly.generateMesh(regions=(instance,))

# 创建作业并提交分析
job = mdb.Job(name='NegativePoissonRatioJob', model='NegativePoissonRatioModel')
job.submit()
job.waitForCompletion()

# 后处理(简单示例,提取一些结果数据)
odb = openOdb(path='NegativePoissonRatioJob.odb')
lastFrame = odb.steps['Step-1'].frames[-1]
stressField = lastFrame.fieldOutputs['S']
for value in stressField.values:
    print(value.data)

odb.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值