tensorboard的用法

文章介绍了如何在Python中使用TensorBoard,包括添加标量、函数图、直方图、图像和网络图的可视化,以及额外的文本、视频和PR曲线等高级功能。
摘要由CSDN通过智能技术生成

部分测试代码:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
import torch
import cv2 as cv
import matplotlib.pyplot as plt
from torch import nn
from torchvision import datasets

def functiontools():
    writer = SummaryWriter("logs");
    #绘制一次函数
    for i in range(1, 101):
        writer.add_scalar('y = 2x', i, 2 * i)

    #回执2次函数
    for i in range(-500, 500):
        writer.add_scalar("y=x*x", i * i, i)
    #绘制三次函数
    for i in range(-500, 500):
        writer.add_scalar("y=x*x*x", i * i * i, i)

    r = 5
    #绘制多曲线
    for i in range(1, 101):
        writer.add_scalars('run_14h', {'xsinx': i * np.sin(i / r),
                                       'xcosx': i * np.cos(i / r),
                                       'xtanx': i * np.tan(i / r)}, i)
    #绘制直方图
    for step in range(10):
        i = np.random.randn(1000)
        writer.add_histogram('distribution of gaussion', i, step)

    # 渲染(figure)
    x = np.linspace(0, 10, 1000)
    y = np.sin(x)

    figure1 = plt.figure()
    plt.plot(x, y, 'r-')
    writer.add_figure('my_figure', figure1, 0)


    
    dataset = datasets.MNIST('mnist', train=False, download=True)
    images = dataset.test_data[:100].float()
    label = dataset.test_labels[:100]
    features = images.view(100, 784)
    writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

    writer.close()


def image():
    image_path = "../0e630643930fb8778aa59b6bfaceccc.png"  # 图片路径
    # 读取图片的两种方式:
    img_PIL = Image.open(image_path)  # 方式一
    # img_PIL = cv2.imread(image_path)  # 方式二
    img_array = np.array(img_PIL)
    writer = SummaryWriter("logs")  # 文件夹“logs”
    writer.add_image('ant', img_array, 1, dataformats='HWC')

    # 或者
    img = cv.imread('zhou.jpg', cv.IMREAD_COLOR)  # 输入图像要是3通道的,所以读取彩色图像
    img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    img = torch.tensor(img.transpose(2, 0, 1))  # cv读取为numpy图像为(H * W * C),所以要进行轴转换
    writer.add_image('CIRAF-10', img, 0)

    writer.close()

# 网络(graph)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.Net = nn.Sequential(
            nn.Linear(784, 512),
            nn.ReLU(),

            nn.Linear(512, 128),
            nn.ReLU(),

            nn.Linear(128, 10)
        )

    def forward(self, input):
        input = input.view(-1, 28 * 28)
        return self.Net(input)
def net():
    model = MLP()
    input = torch.FloatTensor(np.random.rand(32, 1, 28, 28))
    writer = SummaryWriter("logs")  # 文件夹“logs”
    writer.add_graph(model, input)
    writer.close()

if __name__ =='__main__':
    #函数
    functiontools()
    #图片
    image()

安装:

pip install tensorboard

运行:

tensorboard --logdir=httdemo/logs --port=6007#自己制定显示的端口号 

 

后续的一些功能:

# 7. add_text()
# add_text(tag, text_string, global_step=None, walltime=None)
# 功能:记录文字
# 8. add_video()
# add_video(tag, vid_tensor, global_step=None, fps=4, walltime=None)
# 功能:记录 video
# 9. add_figure()
# add_figure(tag, figure, global_step=None, close=True, walltime=None)
# 功能:添加 matplotlib 图片到图像中
# 10. add_image_with_boxes()
# add_image_with_boxes(tag, img_tensor, box_tensor, global_step=None, walltime=None, **kwargs)
# 功能:图像中绘制 Box,目标检测中会用到
# 11. add_pr_curve()
# add_pr_curve(tag, labels, predictions, global_step=None, num_thresholds=127, weights=None, walltime=None)
# 功能:绘制 PR 曲线
# 12. add_pr_curve_raw()
# add_pr_curve_raw(tag, true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, global_step=None, num_thresholds=127, weights=None, walltime=None)
# 功能:从原始数据上绘制 PR 曲线
# 13. export_scalars_to_json()
# export_scalars_to_json(path)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值