【机器学习】AUC和ROC

首先我们来看混淆矩阵:

在这里插入图片描述
然后,由此引出True Positive Rate(真阳率)、False Positive(伪阳率)两个概念:
在这里插入图片描述
TPRate的意义是所有真实类别为1的样本中,预测类别为1的比例
FPRate的意义是所有真实类别为0的样本中,预测类别为1的比例

ROC

ROC曲线的横轴是FPRate,纵轴是TPRate
在这里插入图片描述
当X=Y时,分类器的预测能力为0,也就是和抛硬币没区别,此时AUC为0.5

但是我们希望对一个类别为1的样本,TPRate > FPRate,知识后,我们希望AUC>0.5
,AUC的最大值就是TPRate一直是1,而FPRate是0

AUC的优点是可以在样本不平衡的情况下对分类器做出合理评级:

例如在反欺诈场景,设欺诈类样本为正例,正例占比很少(假设0.1%),如果使用准确率评估,把所有的样本预测为负例,便可以获得99.9%的准确率
但是如果使用AUC,TPRate是0,FPRate也是0,然后0,0和1,1相连,AUC是0.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值