【代码】BMS卡尔曼滤波的SOC算法,C语言实现示例

代码提供了一个使用卡尔曼滤波的BMSSOC算法,通过加入电流积分和开路电压估算来提高电池SOC(StateofCharge)的准确性。算法包括计算电池内阻和开路电压的函数,以及一个卡尔曼滤波器结构体,用于更新和估算电池状态。主函数中展示了如何利用这些功能进行电池SOC的估算,并打印输出结果。
摘要由CSDN通过智能技术生成

以下是一个基于卡尔曼滤波的BMS SOC算法的C语言实现,加入了电流积分和开路电压估算,以提高SOC估算的准确性。

#include <stdio.h>
#include <math.h>

#define VOLTAGE_SCALE 1000 // 电压量程为0-5V,放大1000倍

// 定义卡尔曼滤波器结构体
typedef struct {
    float x; // 状态变量
    float p; // 状态协方差
    float k; // 卡尔曼增益
    float q; // 状态噪声方差
    float r; // 测量噪声方差
} kalman_filter_t;

// 初始化卡尔曼滤波器
void kalman_filter_init(kalman_filter_t *kf, float q, float r) {
    kf->x = 0;
    kf->p = 1;
    kf->k = 0;
    kf->q = q;
    kf->r = r;
}

// 卡尔曼滤波器更新
float kalman_filter_update(kalman_filter_t *kf, float z) {
    kf->k = kf->p / (kf->p + kf->r);
    kf->x = kf->x + kf->k * (z - kf->x);
    kf->p = (1 - kf->k) * kf->p + kf->q;
    return kf->x;
}

// 计算电池内阻
float calculate_battery_resistance(float voltage, float current) {
    float voltage_scaled = voltage * VOLTAGE_SCALE; // 电压量程为0-5V,放大1000倍
    float current_scaled = current * 1000; // 电流量程为-5A~5A,放大1000倍
    float battery_resistance = 0;

    if (current_scaled > 0) {
        battery_resistance = voltage_scaled / current_scaled;
    } else {
        battery_resistance = 0;
    }

    return battery_resistance;
}

// 计算电池开路电压
float calculate_open_circuit_voltage(float voltage, float current, float resistance) {
    float voltage_scaled = voltage * VOLTAGE_SCALE; // 电压量程为0-5V,放大1000倍
    float current_scaled = current * 1000; // 电流量程为-5A~5A,放大1000倍
    float open_circuit_voltage = voltage_scaled + resistance * current_scaled;
    return open_circuit_voltage / VOLTAGE_SCALE; // 缩小1000倍
}

// 估算电池SOC
float estimate_soc(float voltage, float current, float capacity, float resistance, float q, float r, float alpha, float beta) {
    static kalman_filter_t kf;
    static float last_voltage = 0;
    static float last_time = 0;
    static float last_current = 0;
    static float last_soc = 0;
    float soc = 0;
    float voltage_diff = 0;
    float current_scaled = current * 1000; // 电流量程为-5A~5A,放大1000倍
    float voltage_scaled = voltage * VOLTAGE_SCALE; // 电压量程为0-5V,放大1000倍
    float battery_resistance = 0;
    float open_circuit_voltage = 0;
    // 计算电池内阻 
    battery_resistance = calculate_battery_resistance(voltage, current);

	// 计算电池开路电压
	open_circuit_voltage = calculate_open_circuit_voltage(voltage, current, resistance);
	
	// 初始化卡尔曼滤波器
	if (last_voltage == 0) {
	    kalman_filter_init(&kf, q, r);
	    kf.x = open_circuit_voltage;
	}

	// 计算电池剩余容量
	float time_diff = (float)(clock() - last_time) / CLOCKS_PER_SEC; // 计算时间差
	float remaining_capacity = last_current * (time_diff / 3600) + last_soc * capacity / 100;
																						
	// 计算电池开路电压估算值
	float estimated_ocv = alpha * remaining_capacity / capacity + beta;

	// 使用卡尔曼滤波器估算电池开路电压
	float filtered_ocv = kalman_filter_update(&kf, estimated_ocv);
	
	// 更新上次电压、电流、SOC和时间																									
	last_voltage = voltage_scaled;											
	last_current = current_scaled;
	last_soc = soc;
	last_time = clock();
	
	// 计算电池SOC
	soc = remaining_capacity / capacity * 100;
	
	return soc;
}

// 主函数 
void main()
{
	float voltage = 3.7; // 假设电池电压为3.7V 
	float current = -1; // 假设电池放电电流为1A 
	float capacity = 2000; // 假设电池容量为2000mAh
	float resistance = 0.1; // 假设电池内阻 
	float alpha = 0.8; // 假设alpha为0.8
	float beta = 3.2; // 假设beta为3.2
	
	// 假设卡尔曼滤波器的状态噪声方差为0.01
	float q = 0.01;
	
	// 假设卡尔曼滤波器的测量噪声方差为0.1
	float r = 0.1;
	
	// 估算电池SOC
	float soc = estimate_soc(voltage, current, capacity, resistance, q, r, alpha, beta);
	
	// 打印电池SOC
	printf("当前电池SOC为:%.2f%%\n", soc);
	
}

在该代码中,我们添加了计算电池内阻和开路电压的函数,并使用电流积分和开路电压估算来提高SOC估算的准确性。我们定义了一个last_voltage变量来记录上次电压值,一个last_current变量来记录上次电流值,一个last_soc变量来记录上次SOC值,一个last_time变量来记录上次计算时间。在estimate_soc函数中,我们计算了电池剩余容量、电池开路电压估算值和使用卡尔曼滤波器估算的电池开路电压,并更新上次电压、电流、SOC和时间。最后,在main函数中,我们传入电池电压、电流、容量、内阻、状态噪声方差、测量噪声方差、alpha和beta等参数来估算电池SOC,并打印输出结果。

需要注意的是,本代码示例仅作为参考,具体实现方法还需要根据实际需求进行修改和优化。另外,卡尔曼滤波器的参数需要根据电池的实际情况进行调试,以获得更准确的估算结果。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值