以下是一个基于卡尔曼滤波的BMS SOC算法的C语言实现,加入了电流积分和开路电压估算,以提高SOC估算的准确性。
#include <stdio.h>
#include <math.h>
#define VOLTAGE_SCALE 1000 // 电压量程为0-5V,放大1000倍
// 定义卡尔曼滤波器结构体
typedef struct {
float x; // 状态变量
float p; // 状态协方差
float k; // 卡尔曼增益
float q; // 状态噪声方差
float r; // 测量噪声方差
} kalman_filter_t;
// 初始化卡尔曼滤波器
void kalman_filter_init(kalman_filter_t *kf, float q, float r) {
kf->x = 0;
kf->p = 1;
kf->k = 0;
kf->q = q;
kf->r = r;
}
// 卡尔曼滤波器更新
float kalman_filter_update(kalman_filter_t *kf, float z) {
kf->k = kf->p / (kf->p + kf->r);
kf->x = kf->x + kf->k * (z - kf->x);
kf->p = (1 - kf->k) * kf->p + kf->q;
return kf->x;
}
// 计算电池内阻
float calculate_battery_resistance(float voltage, float current) {
float voltage_scaled = voltage * VOLTAGE_SCALE; // 电压量程为0-5V,放大1000倍
float current_scaled = current * 1000; // 电流量程为-5A~5A,放大1000倍
float battery_resistance = 0;
if (current_scaled > 0) {
battery_resistance = voltage_scaled / current_scaled;
} else {
battery_resistance = 0;
}
return battery_resistance;
}
// 计算电池开路电压
float calculate_open_circuit_voltage(float voltage, float current, float resistance) {
float voltage_scaled = voltage * VOLTAGE_SCALE; // 电压量程为0-5V,放大1000倍
float current_scaled = current * 1000; // 电流量程为-5A~5A,放大1000倍
float open_circuit_voltage = voltage_scaled + resistance * current_scaled;
return open_circuit_voltage / VOLTAGE_SCALE; // 缩小1000倍
}
// 估算电池SOC
float estimate_soc(float voltage, float current, float capacity, float resistance, float q, float r, float alpha, float beta) {
static kalman_filter_t kf;
static float last_voltage = 0;
static float last_time = 0;
static float last_current = 0;
static float last_soc = 0;
float soc = 0;
float voltage_diff = 0;
float current_scaled = current * 1000; // 电流量程为-5A~5A,放大1000倍
float voltage_scaled = voltage * VOLTAGE_SCALE; // 电压量程为0-5V,放大1000倍
float battery_resistance = 0;
float open_circuit_voltage = 0;
// 计算电池内阻
battery_resistance = calculate_battery_resistance(voltage, current);
// 计算电池开路电压
open_circuit_voltage = calculate_open_circuit_voltage(voltage, current, resistance);
// 初始化卡尔曼滤波器
if (last_voltage == 0) {
kalman_filter_init(&kf, q, r);
kf.x = open_circuit_voltage;
}
// 计算电池剩余容量
float time_diff = (float)(clock() - last_time) / CLOCKS_PER_SEC; // 计算时间差
float remaining_capacity = last_current * (time_diff / 3600) + last_soc * capacity / 100;
// 计算电池开路电压估算值
float estimated_ocv = alpha * remaining_capacity / capacity + beta;
// 使用卡尔曼滤波器估算电池开路电压
float filtered_ocv = kalman_filter_update(&kf, estimated_ocv);
// 更新上次电压、电流、SOC和时间
last_voltage = voltage_scaled;
last_current = current_scaled;
last_soc = soc;
last_time = clock();
// 计算电池SOC
soc = remaining_capacity / capacity * 100;
return soc;
}
// 主函数
void main()
{
float voltage = 3.7; // 假设电池电压为3.7V
float current = -1; // 假设电池放电电流为1A
float capacity = 2000; // 假设电池容量为2000mAh
float resistance = 0.1; // 假设电池内阻
float alpha = 0.8; // 假设alpha为0.8
float beta = 3.2; // 假设beta为3.2
// 假设卡尔曼滤波器的状态噪声方差为0.01
float q = 0.01;
// 假设卡尔曼滤波器的测量噪声方差为0.1
float r = 0.1;
// 估算电池SOC
float soc = estimate_soc(voltage, current, capacity, resistance, q, r, alpha, beta);
// 打印电池SOC
printf("当前电池SOC为:%.2f%%\n", soc);
}
在该代码中,我们添加了计算电池内阻和开路电压的函数,并使用电流积分和开路电压估算来提高SOC估算的准确性。我们定义了一个last_voltage
变量来记录上次电压值,一个last_current
变量来记录上次电流值,一个last_soc
变量来记录上次SOC值,一个last_time
变量来记录上次计算时间。在estimate_soc
函数中,我们计算了电池剩余容量、电池开路电压估算值和使用卡尔曼滤波器估算的电池开路电压,并更新上次电压、电流、SOC和时间。最后,在main
函数中,我们传入电池电压、电流、容量、内阻、状态噪声方差、测量噪声方差、alpha和beta等参数来估算电池SOC,并打印输出结果。
需要注意的是,本代码示例仅作为参考,具体实现方法还需要根据实际需求进行修改和优化。另外,卡尔曼滤波器的参数需要根据电池的实际情况进行调试,以获得更准确的估算结果。