一、向量的数量积(内积):
已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b;
两个向量的数量积等于它们对应坐标的乘积的和:
- 数量积a·b等于 a的长度|a| 与 b在a的方向上的投影|b|cosθ 的乘积
- 向量
属于n维复向量空间,每个
表示向量在第i维空间中的坐标值。
向量的模(即向量a的长度)为:
二、向量的范数理解:
向量的范数可以理解成距离。
向量的1-范数:
**向量的2-范数:
向量2范数可以理解为点到空间原点(可以是高维空间)的距离;
相当于:
范数的含义:
- 范数表征了距离这个物理量,可以用于比较不同的向量。
- 向量
的2-范数表示了
这个点与空间原点的距离,也相当于
这个向量的长度(模)。
- 求一个向量的长度或者两点间的距离时,可以用2-范数
参考链接:
关于向量范数的理解:https://www.jianshu.com/p/f0e41ebe5e4b