千万级类别人脸识别模型并行训练

前言:

这里附上一个很全面的人脸识别发展综述文章

《人脸识别的最新进展以及工业级大规模人脸识别实践探讨》

https://blog.csdn.net/valada/article/details/80892724

并行训练的方式:

  • 1.nn.DataParallel数据并行。将一个batchsize中的数据分给多个GPU并行训练。
  • 2.模型并行。将FC层拆分给多个GPU进行并行训练。
  • 3.partial_fc。(抽样fc层)

一、模型并行

目前处理大规模(数据多、类别大)数据集的方法:

混合并行:即backbone使用数据并行,分类层使用模型并行;

该方法具备两个优点:

  • 1)缓解了 W 的存储压力。将W划分为k个子矩阵w;
  • 2)将 W 梯度的通信转换成了所有GPU的特征 X 与 softmax 局部分母的通信,大大降低了数据并行带来的通信开销。

模型并行的结构图:

模型并行方法的弊端:

模型并行的方式理论上看似能无限增加类别数(只要增加GPU数量即可),但是实际上大家在尝试更大规模、更多机器的时候,会发现显存不够用了,好像增加类别数的同时增加机器,单个GPU的显存还在增长?其实我们忽略了另外一个占据显存的张量:predicted logits的存储会受到总批大小的增加的影响。logits(预计日志的存储会受到总批大小的增加的影响)。

首先定义 logits = X_w,其中 w 为存储在每张GPU上的子矩阵,X 为经过集合通信 Allgaher 收集到的全局特征,d 为特征的维度大小,C 为总的类别数,k 为GPU的个数。其中每块GPU中 w 占用的显存为:

结论:当我们不停的增加GPU数量时,logits占用的内存也会增大,当GPU数量K大到一定量时,内存就会溢出了。

二、Partial FC(FC抽样)

该研究对此提出了一个简单的解决方案:

在实现混合并行时,不仅同步每张卡的特征,同时也同步每张卡的标签,这样每张卡都具备所有卡的完整特征和标签。假设总的批次大小为 kN,则至多会有 kN 个正类中心随机分布在所有的GPU中,让每个正类中心所属的GPU将该正类采样出来即可,每张GPU正类采出来后,再随机用负类补齐到约定的采样率。这样每张GPU采样到的类中心一样多,实现负载均衡。后续的过程就是分类层的模型并行部分了,需要注意的是,只有采样出来的类中心的权重和动量会更新。

partial_fc论文博客:

https://jishuin.proginn.com/p/763bfbd2fee4

https://blog.csdn.net/weixin_43152063/article/details/115307938

https://blog.51cto.com/u_15282017/2974039

https://blog.csdn.net/zengwubbb/article/details/109050165

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值