win10 GTX1060 1070 测试能正常使用的组合
TF-gpu 2.3.1 Keras 2.4.0 cuda 10.1 cudnn 7.6.4.38
下载一次性替换源
pip install tensorflow-gpu==2.1 -i http://pypi.douban.com/simple
查看N卡工作情况
nvidia-smi -l #动态刷新 使用前配路径C:\Program Files\NVIDIA Corporation/NVSMI
查看cuda版本
nvcc -v
查看cuDNN版本
在cuda安装路径下的 Include 文件夹 cudnn.h 中
在编译器中查看GPU
tf.test.gpu_device_name
tf.test.is_gpu_available()
Anaconda 查看环境
conda info --envs
创建新的环境
conda create --name yourENVname python =3.8.0
激活/反激活
conda activate yourENVname
conda deactivate
conda remove yourENVname
关闭所有除erro外的提示
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
设置显存
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.9