最小二乘3D圆拟合(高斯牛顿法)

53 篇文章 6 订阅
37 篇文章 0 订阅

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

本期话题:最小二乘3D圆拟合

相关背景资料
点击前往

在这里插入图片描述

3D圆拟合输入和输出要求

输入

  1. 8到50个点,全部采样自3D圆上。
  2. 每个点3个坐标,坐标精确到小数点后面20位。
  3. 坐标单位是mm, 范围[-500mm, 500mm]。

tips
输入虽然是严格来自3D圆,但是由于浮点表示,记录的值和真实值始终是有微小的误差,点云到拟合圆的距离不可能完全为0。

输出

  1. 1点X0表示 圆心,用三个坐标表示。
  2. 法向A代表圆所在平面法向。
  3. 圆半径r。

精度要求

  1. X0点到标准圆心距离不能超过0.0001mm。
  2. 法向A与圆法向夹角不能超过0.0000001rad。
  3. r与标准半径的差不能超过0.0001mm。

3D圆优化标函数

根据论文,圆拟合转化成数学表示如下:

圆参数化表示

  1. 圆心为1点X0 = (x0, y0, z0)。
  2. 法向A=(a,b,c)。
  3. 半径r。

圆方程 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = r 2 a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 圆方程\begin {array}{c}(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2 \\ a(x-x_0)+b(y-y_0)+c(z-z_0)=0 \end {array} 圆方程(xx0)2+(yy0)2+(zz0)2=r2a(xx0)+b(yy0)+c(zz0)=0

能量方程

第i个点 pi(xi, yi, zi)。

定义距离如图

在这里插入图片描述
根据勾股定理,黄色线为距离。

d i = e i 2 + f i 2 d_i = \sqrt{e_i^2+f_i^2} di=ei2+fi2

根据定义得到能量方程

E = ∑ 1 n d i 2 = ∑ 1 n ( e i 2 + f i 2 ) E=\displaystyle \sum _1^n {d_i^2}=\displaystyle \sum _1^n {(e_i^2+f_i^2)} E=1ndi2=1n(ei2+fi2)

e i = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) f i = u i 2 + v i 2 + w i 2 − r \begin {array}{l} e_i =a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)\\ f_i=\sqrt{u_i^2+v_i^2+w_i^2}-r\end {array} ei=a(xix0)+b(yiy0)+c(ziz0)fi=ui2+vi2+wi2 r

u i = c ( y i − y 0 ) − b ( z i − z 0 ) v i = a ( z i − z 0 ) − c ( x i − x 0 ) w i = b ( x i − x 0 ) − a ( y i − y 0 ) \begin {array}{l}u_i =c(y_i-y_0)-b(z_i-z_0)\\ v_i=a(z_i-z_0)-c(x_i-x_0)\\ w_i=b(x_i-x_0)-a(y_i-y_0)\end {array} ui=c(yiy0)b(ziz0)vi=a(ziz0)c(xix0)wi=b(xix0)a(yiy0)

最小二乘优化能量方程

能量方程 E = f ( X 0 , A , r ) = ∑ 1 n d i 2 E=f(X0, A, r)=\displaystyle \sum _1^n {d_i^2} E=f(X0,A,r)=1ndi2

上式是一个7元二次函数中,X0, A, r是未知量,拟合3D圆的过程也可以理解为优化X0, A, r使得方程E最小。

上述方程直接求导不好解,可以使用高斯牛顿迭代法。

高斯牛顿迭代法

用于解非线性最小二乘问题。同时,高斯牛顿法需要比较可靠的初值,所以寻找目标函数的初值也是一个比较关键的步骤。

基本原理

设 a = ( a 0 , a 1 , . . . , a n ) 是待求解向量, a ^ 是初始给定值, a = a ^ + Δ a , Δ a 是我们每次迭代后移动的量 设 a=(a_0, a_1,...,a_n)是待求解向量,\widehat {a} 是初始给定值,a = \widehat {a} +\Delta a, \Delta a 是我们每次迭代后移动的量 a=(a0,a1,...,an)是待求解向量,a 是初始给定值,a=a +Δa,Δa是我们每次迭代后移动的量

定义距离函数为 F ( x , a ) , d i = F ( x i , a ) , 进行泰勒 1 阶展开, F ( x , a ) = F ( x , a ^ ) + ∂ F ∂ a ^ Δ a = F ( x , a ^ ) + J Δ a 定义距离函数为 F(x, a), d_i = F(x_i, a), 进行泰勒1阶展开, F(x, a) = F(x, \widehat a) + \frac {\partial F}{\partial \widehat a}\Delta a = F(x, \widehat a) + J\Delta a 定义距离函数为F(x,a),di=F(xi,a),进行泰勒1阶展开,F(x,a)F(x,a )+a FΔa=F(x,a )+JΔa

每次迭代,其实就是希望通过调整 Δ a 使得 J Δ a = − F ( x , a ^ ) 每次迭代,其实就是希望通过调整\Delta a 使得 J\Delta a = -F(x, \widehat a) 每次迭代,其实就是希望通过调整Δa使得JΔaF(x,a )

J = [ ∂ F ( x 0 , a ) ∂ a 0 ∂ F ( x 0 , a ) ∂ a 1 . . . ∂ F ( x 0 , a ) ∂ a n ∂ F ( x 1 , a ) ∂ a 0 ∂ F ( x 1 , a ) ∂ a 1 . . . ∂ F ( x 1 , a ) ∂ a n . . . . . . . . . . . . ∂ F ( x n , a ) ∂ a 0 ∂ F ( x n , a ) ∂ a 1 . . . ∂ F ( x n , a ) ∂ a n ] J = \begin {bmatrix} \frac {\partial F(x_0, a)} {\partial a_0} & \frac {\partial F(x_0, a)} {\partial a_1} & ...& \frac {\partial F(x_0, a)} {\partial a_n} \\ \\ \frac {\partial F(x_1, a)} {\partial a_0} & \frac {\partial F(x_1, a)} {\partial a_1} & ...& \frac {\partial F(x_1, a)} {\partial a_n} \\\\ ... & ... & ...& ... \\ \\ \frac {\partial F(x_n, a)} {\partial a_0} & \frac {\partial F(x_n, a)} {\partial a_1} & ...& \frac {\partial F(x_n, a)} {\partial a_n} \end {bmatrix} J= a0F(x0,a)a0F(x1,a)...a0F(xn,a)a1F(x0,a)a1F(x1,a)...a1F(xn,a)............anF(x0,a)anF(x1,a)...anF(xn,a)

F ( x , a ^ ) = [ d 1 d 2 . . . d m ] F(x, \widehat a) = \begin {bmatrix} d_1 \\ d_2 \\... \\ d_m \end {bmatrix} F(x,a )= d1d2...dm

J Δ a = − F ( x , a ^ ) , 解出 Δ a , 更新 a = a ^ + Δ a , 持续迭代直到 Δ a 足够小 J\Delta a = -F(x,\widehat a), 解出\Delta a ,更新 a = \widehat {a} +\Delta a, 持续迭代直到\Delta a足够小 JΔa=F(x,a ),解出Δa,更新a=a +Δa,持续迭代直到Δa足够小

用2个数表示法向

如果直接拿3个参数表示法向去做迭代,1是比较麻烦,会出现比较难解的方向,2是法向长度不固定,结果不唯一。

当直线与Z轴偏差比较小的时候可以使用2个参数来表示。

在这里插入图片描述
如上图,绿线为Z轴,橙色线为XOY平面。

由于法向与Z轴比较相近,可以设法向为(a, b, 1), a,b 是比较小的量。

模型简化

为了使用上述方法,当得到一个拟合初值后,需要先将中心线旋转致Z轴,把圆心移致0点。

此时,
x0=y0=z0=0.
a=b=0, c=1.

e i = z i f i = ( x i 2 + y i 2 ) − r \begin {array}{l} e_i =z_i\\ f_i=\sqrt{(x_i^2+y_i^2)}-r\end {array} ei=zifi=(xi2+yi2) r

算法描述

E = ∑ 1 n ( e i 2 + f i 2 ) = ∑ 1 n e i 2 + ∑ 1 n f i 2 E=\displaystyle \sum _1^n {(e_i^2+f_i^2)}=\displaystyle \sum _1^n {e_i^2}+\displaystyle \sum _1^n{f_i^2} E=1n(ei2+fi2)=1nei2+1nfi2

我们希望ei,fi 都等于0。
可以对ei, fi 分别求偏导

J, D的计算。

J = ∂ e 1 ∂ x 0 ∂ e 1 ∂ y 0 ∂ e 1 ∂ a ∂ e 1 ∂ b ∂ e 1 ∂ r ∂ e 2 ∂ x 0 ∂ e 2 ∂ y 0 ∂ e 2 ∂ a ∂ e 2 ∂ b ∂ e 2 ∂ r . . . . . . . . . . . . . . . ∂ e n ∂ x 0 ∂ e n ∂ y 0 ∂ e n ∂ a ∂ e n ∂ b ∂ e n ∂ r ∂ f 1 ∂ x 0 ∂ f 1 ∂ y 0 ∂ f 1 ∂ a ∂ f 1 ∂ b ∂ f 1 ∂ r ∂ f 2 ∂ x 0 ∂ f 2 ∂ y 0 ∂ f 2 ∂ a ∂ f 2 ∂ b ∂ f 2 ∂ r . . . . . . . . . . . . . . . ∂ f n ∂ x 0 ∂ f n ∂ y 0 ∂ f n ∂ a ∂ f n ∂ b ∂ f n ∂ r ,   D = e 1 e 2 . . . e n f 1 f 2 . . . f n J= \begin{array}{l} \frac {\partial e_1}{\partial x_0}& \frac {\partial e_1}{\partial y_0}& \frac {\partial e_1}{\partial a}& \frac {\partial e_1}{\partial b}& \frac {\partial e_1}{\partial r} \\ \frac {\partial e_2}{\partial x_0}& \frac {\partial e_2}{\partial y_0}& \frac {\partial e_2}{\partial a}& \frac {\partial e_2}{\partial b}& \frac {\partial e_2}{\partial r}\\...&...&...&...&...\\\frac {\partial e_n}{\partial x_0}& \frac {\partial e_n}{\partial y_0}& \frac {\partial e_n}{\partial a}& \frac {\partial e_n}{\partial b}& \frac {\partial e_n}{\partial r}\\ \frac {\partial f_1}{\partial x_0}& \frac {\partial f_1}{\partial y_0}& \frac {\partial f_1}{\partial a}& \frac {\partial f_1}{\partial b}& \frac {\partial f_1}{\partial r} \\ \frac {\partial f_2}{\partial x_0}& \frac {\partial f_2}{\partial y_0}& \frac {\partial f_2}{\partial a}& \frac {\partial f_2}{\partial b}& \frac {\partial f_2}{\partial r}\\...&...&...&...&...\\\frac {\partial f_n}{\partial x_0}& \frac {\partial f_n}{\partial y_0}& \frac {\partial f_n}{\partial a}& \frac {\partial f_n}{\partial b}& \frac {\partial f_n}{\partial r} \end {array}, \ D= \begin{array}{l} e_1\\e_2\\...\\e_n\\ f_1\\f_2\\...\\f_n \end {array} J=x0e1x0e2...x0enx0f1x0f2...x0fny0e1y0e2...y0eny0f1y0f2...y0fnae1ae2...aenaf1af2...afnbe1be2...benbf1bf2...bfnre1re2...renrf1rf2...rfn, D=e1e2...enf1f2...fn

6个未知分别对e_i, f_i求导结果如下:

∂ e i ∂ x 0 = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) ∂ x 0 = − a = 0 \frac {\partial e_i} {\partial x_0}=\frac {a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)} {\partial x_0} = -a=0 x0ei=x0a(xix0)+b(yiy0)+c(ziz0)=a=0

∂ e i ∂ y 0 = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) ∂ y 0 = − b = 0 \frac {\partial e_i} {\partial y_0}=\frac {a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)} {\partial y_0} = -b=0 y0ei=y0a(xix0)+b(yiy0)+c(ziz0)=b=0

∂ e i ∂ z 0 = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) ∂ z 0 = − c = − 1 \frac {\partial e_i} {\partial z_0}=\frac {a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)} {\partial z_0} = -c=-1 z0ei=z0a(xix0)+b(yiy0)+c(ziz0)=c=1

∂ e i ∂ a = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) ∂ a = x i − x 0 = x i \frac {\partial e_i} {\partial a}=\frac {a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)} {\partial a} = x_i-x_0=x_i aei=aa(xix0)+b(yiy0)+c(ziz0)=xix0=xi

∂ e i ∂ b = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) ∂ b = y i − y 0 = y i \frac {\partial e_i} {\partial b}=\frac {a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)} {\partial b} = y_i-y_0=y_i bei=ba(xix0)+b(yiy0)+c(ziz0)=yiy0=yi

∂ e i ∂ r = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) ∂ r = 0 \frac {\partial e_i} {\partial r}=\frac {a(x_i-x_0)+b(y_i-y_0)+c(z_i-z_0)} {\partial r} = 0 rei=ra(xix0)+b(yiy0)+c(ziz0)=0

回顾一下

u i = c ( y i − y 0 ) − b ( z i − z 0 ) v i = a ( z i − z 0 ) − c ( x i − x 0 ) w i = b ( x i − x 0 ) − a ( y i − y 0 ) \begin {array}{l}u_i =c(y_i-y_0)-b(z_i-z_0)\\ v_i=a(z_i-z_0)-c(x_i-x_0)\\ w_i=b(x_i-x_0)-a(y_i-y_0)\end {array} ui=c(yiy0)b(ziz0)vi=a(ziz0)c(xix0)wi=b(xix0)a(yiy0)

∂ f i ∂ x 0 = u i 2 + v i 2 + w i 2 − r ∂ x 0 = ( x i − x 0 ) 2 ∂ x 0 2 u i 2 + v i 2 + w i 2 = − x i x i 2 + y i 2 \frac {\partial f_i} {\partial x_0}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial x_0} \\ =\frac {\frac {(x_i-x_0)^2}{\partial x_0}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-x_i}{\sqrt{x_i^2+y_i^2}} x0fi=x0ui2+vi2+wi2 r=2ui2+vi2+wi2 x0(xix0)2=xi2+yi2 xi

∂ f i ∂ y 0 = u i 2 + v i 2 + w i 2 − r ∂ y 0 = ( y i − y 0 ) 2 ∂ y 0 2 u i 2 + v i 2 + w i 2 = − y i x i 2 + y i 2 \frac {\partial f_i} {\partial y_0}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial y_0} \\ =\frac {\frac {(y_i-y_0)^2}{\partial y_0}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-y_i}{\sqrt{x_i^2+y_i^2}} y0fi=y0ui2+vi2+wi2 r=2ui2+vi2+wi2 y0(yiy0)2=xi2+yi2 yi

∂ f i ∂ z 0 = u i 2 + v i 2 + w i 2 − r ∂ z 0 = 0 \frac {\partial f_i} {\partial z_0}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial z_0}=0 z0fi=z0ui2+vi2+wi2 r=0

∂ f i ∂ a = u i 2 + v i 2 + w i 2 − r ∂ a = [ a ( z i − z 0 ) − c ( x i − x 0 ) ] 2 ∂ a 2 u i 2 + v i 2 + w i 2 = − x i z i x i 2 + y i 2 \frac {\partial f_i} {\partial a}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial a}\\ =\frac {\frac {[a(z_i-z_0)-c(x_i-x_0)]^2}{\partial a}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-x_iz_i}{\sqrt{x_i^2+y_i^2}} afi=aui2+vi2+wi2 r=2ui2+vi2+wi2 a[a(ziz0)c(xix0)]2=xi2+yi2 xizi

∂ f i ∂ b = u i 2 + v i 2 + w i 2 − r ∂ b = [ c ( y i − y 0 ) − b ( z i − z 0 ) ] 2 ∂ b 2 u i 2 + v i 2 + w i 2 = − y i z i x i 2 + y i 2 \frac {\partial f_i} {\partial b}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial b}\\ =\frac {\frac {[c(y_i-y_0)-b(z_i-z_0)]^2}{\partial b}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-y_iz_i}{\sqrt{x_i^2+y_i^2}} bfi=bui2+vi2+wi2 r=2ui2+vi2+wi2 b[c(yiy0)b(ziz0)]2=xi2+yi2 yizi

∂ f i ∂ r = u i 2 + v i 2 + w i 2 − r ∂ r = − 1 \frac {\partial f_i} {\partial r}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial r} = -1 rfi=rui2+vi2+wi2 r=1

  1. 确定圆初值

  2. 将中轴通过刚体变换U至Z轴,U的构建可以参考代码
    [ x i y i z i ] = U ⋅ ( [ x i y i z i ] − [ x 0 y 0 z 0 ] ) \begin {bmatrix}x_i \\ y_i \\ z_i \end {bmatrix} = U \cdot \left (\begin {bmatrix}x_i \\ y_i \\ z_i \end {bmatrix}- \begin{bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix}\right ) xiyizi =U xiyizi x0y0z0

  3. 根据上述公式构建 J ⋅ ( [ p x 0 p y 0 p z 0 p a p b p r ] ) = − D J \cdot \left(\begin {bmatrix}p_{x_0} \\ p_{y_0}\\ p_{z_0}\\p_a\\p_b\\p_{r} \end {bmatrix} \right)=-D J px0py0pz0papbpr =D

  4. 求解 Δ p \Delta p Δp

  5. 更新解
    [ x 0 y 0 z 0 ] = [ x 0 y 0 z 0 ] + U T ⋅ [ p x 0 p y 0 p z 0 ] [ a b c ] = U T ⋅ [ p a p b 1 ] . n o r m a l i z e ( ) r = r + p r \begin {array}{l}\\ \begin {bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix} = \begin {bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix} + U^T \cdot \begin{bmatrix}p_{x_0} \\ p_{y_0}\\ p_{z_0} \end {bmatrix} \\ \\\begin {bmatrix}a \\ b \\ c \end {bmatrix} = U^T \cdot \begin{bmatrix}p_a \\ p_b \\ 1 \end {bmatrix}.normalize() \\\\ r=r+p_r \end {array} x0y0z0 = x0y0z0 +UT px0py0pz0 abc =UT papb1 .normalize()r=r+pr

  6. 重复2直到收敛

初值确定

先对点进行拟合平面点击前往,在平面上拟合出2D圆点击前往

代码实现

代码链接:https://gitcode.com/chenbb1989/3DAlgorithm/tree/master/CBB3DAlgorithm/Fitting

#include "CircleFitter.h"
#include "FittingPlane.h"
#include "FittingCircle2D.h"
#include <Eigen/Dense>


namespace Gauss {
	double F(Fitting::Circle circle, const Point& p)
	{
		double ei = (p - circle.center).dot(circle.orient);
		double fi = (p - circle.center).cross(circle.orient).norm() - circle.r;
		return sqrt(ei * ei + fi * fi);
	}
	double GetError(Fitting::Circle circle, const std::vector<Eigen::Vector3d>& points)
	{
		double err = 0;
		for (auto& p : points) {
			double d = F(circle, p);
			err += d * d;
		}
		err /= points.size();
		return err;
	}
	Fitting::Matrix CircleFitter::Jacobi(const std::vector<Eigen::Vector3d>& points)
	{
		int n = points.size();
		Fitting::Matrix J(2 * n, 6);
		for (int i = 0; i < n; ++i) {
			auto& p = points[i];

			//ei求导
			double ri = p.norm();
			J(i, 0) = 0;
			J(i, 1) = 0;
			J(i, 2) = -1;
			J(i, 3) = p.x();
			J(i, 4) = p.y();
			J(i, 5) = 0;

			//fi求导
			J(i + n, 0) = -p.x() / ri;
			J(i + n, 1) = -p.y() / ri;
			J(i + n, 2) = 0;
			J(i + n, 3) = -p.x() * p.z() / ri;
			J(i + n, 4) = -p.y() * p.z() / ri;
			J(i + n, 5) = -1;
		}
		return J;
	}

	void CircleFitter::beforHook(const std::vector<Eigen::Vector3d>& points)
	{
		U = Fitting::getRotationByOrient(circle.orient);
		for (int i = 0; i < points.size(); ++i) {
			transPoints[i] = U * (points[i] - circle.center);
		}
	}
	void CircleFitter::afterHook(const Eigen::VectorXd& xp)
	{
		circle.center += U.transpose() * Eigen::Vector3d(xp(0), xp(1), xp(2));
		circle.orient = U.transpose() * Eigen::Vector3d(xp(3), xp(4), 1).normalized();
		circle.r += xp(5);
	}
	Eigen::VectorXd CircleFitter::getDArray(const std::vector<Eigen::Vector3d>& points)
	{
		int n = points.size();
		Eigen::VectorXd D(2*points.size());
		for (int i = 0; i < points.size(); ++i) {
			auto& p = points[i];
			// ei
			D(i) = p.z();

			//fi
			D(i + n) = p.norm() - circle.r;
		}
		return D;
	}
	bool CircleFitter::GetInitFit(const std::vector<Eigen::Vector3d>& points)
	{
		if (points.size() < 3)return false;
		// 拟合平面
		Fitting::Plane plane;
		Fitting::FittingBase *fb = new FittingPlane();
		fb->Fitting(points, &plane);
		delete fb;

		// 投影到平面,并旋转致xoy平面
		U = Fitting::getRotationByOrient(plane.Orient);
		transPoints.resize(points.size());
		for (int i = 0; i < points.size(); ++i) {
			auto p = points[i];
			double d = (plane.BasePoint - p).dot(plane.Orient);
			p += d * plane.Orient;
			transPoints[i] = U * (p - plane.BasePoint);
		}

		// 拟合圆
		Fitting::Circle2D circle2d;
		fb = new FittingCircle2D();
		fb->Fitting(transPoints, &circle2d);
		delete fb;

		// 旋转回来
		circle.center = U.transpose() * Eigen::Vector3d(circle2d.center.x(), circle2d.center.y(), 0) + plane.BasePoint;
		circle.orient = plane.Orient;
		circle.r = circle2d.r;
		
		return true;
	}
	double CircleFitter::F(const Eigen::Vector3d& p)
	{
		return Gauss::F(circle, p);
	}
	double CircleFitter::GetError(const std::vector<Eigen::Vector3d>& points)
	{
		return Gauss::GetError(circle, points);
	}
	void CircleFitter::Copy(void* ele)
	{
		memcpy(ele, &circle, sizeof(Fitting::Circle));
	}
}

测试代码

#include "TestCircle.h"
#include "CircleFitter.h"
#include <iostream>

namespace Gauss {

	double TestCircle::Fitting() {
		Fitting::FittingBase* fb = new Gauss::CircleFitter();
		auto err = fb->Fitting(points, &fitResult);
		return err;
	}
	bool TestCircle::JudgeAnswer(FILE* fp) {
		ReadAnswer();
		if (!positionCmp(ans.center, fitResult.center))return false;
		if (!orientationCmp(ans.orient, fitResult.orient))return false;
		if (!radiusCmp(ans.r, fitResult.r))return false;
		return true;
	}
	void TestCircle::ReadAnswer() {
		vector<double> nums;
		if (PointCloud::readNums((suffixName + "/answer/" + fileName + ".txt"), nums)) {
			for (int i = 0; i < 3; ++i) ans.center[i] = nums[i];
			for (int i = 0; i < 3; ++i) ans.orient[i] = nums[i+3];
			ans.r = nums[6];
		}
		else {
			std::cout << "read answer error" << std::endl;
		}
	}
	void TestCircle::SaveAnswer(FILE* fp) {
		writePoint(fp, fitResult.center);
		writePoint(fp, fitResult.orient);
		writeNumber(fp, fitResult.r);
	}
}

测试结果

https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/gauss/fitting_result/result.txt

b09 : CIRCLE : pass
b10 : CIRCLE : pass
b11 : CIRCLE : pass
b12 : CIRCLE : pass
b13 : CIRCLE : pass
b14 : CIRCLE : pass
b15 : CIRCLE : pass


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
高斯牛顿是一种非线性最小二,可以用于曲线。下面是一个使用C语言实现高斯牛顿曲线的示例代码: ```c #include <stdio.h> #include <math.h> #define N 10 // 数据点个数 #define M 3 // 待曲线参数个数 #define MAX_ITER 50 // 最大迭代次数 #define EPS 1e-10 // 精度 // 待曲线的形式:y = a * exp(b * x) + c double a, b, c; // 待曲线参数 // 数据点 double x[N] = {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5}; double y[N] = {0.75, 1.25, 1.85, 2.35, 2.90, 3.45, 4.00, 4.55, 5.10, 5.65}; // 计算待曲线在x处的函数值 double f(double x) { return a * exp(b * x) + c; } // 计算待曲线在x处的导数 double df_da(double x) { return exp(b * x); } double df_db(double x) { return a * x * exp(b * x); } double df_dc() { return 1; } // 高斯牛顿曲线 void gn() { int i, j, k; double r[N] = {0}; // 残差 double J[N][M] = {0}; // Jacobian矩阵 double delta[M] = {0}; // 参数变化量 double sum_r2, last_sum_r2 = 0; // 初始化参数 a = 1; b = 0.1; c = 0; for (k = 0; k < MAX_ITER; k++) { // 计算残差 sum_r2 = 0; for (i = 0; i < N; i++) { r[i] = y[i] - f(x[i]); sum_r2 += r[i] * r[i]; } // 判断是否满足精度要求 if (fabs(sum_r2 - last_sum_r2) < EPS) { break; } else { last_sum_r2 = sum_r2; } // 计算Jacobian矩阵 for (i = 0; i < N; i++) { J[i][0] = df_da(x[i]); J[i][1] = df_db(x[i]); J[i][2] = df_dc(); } // 计算参数变化量 for (i = 0; i < M; i++) { delta[i] = 0; for (j = 0; j < N; j++) { delta[i] += J[j][i] * r[j]; } delta[i] /= N; } // 更新参数 a += delta[0]; b += delta[1]; c += delta[2]; } // 输出结果 printf("a = %f, b = %f, c = %f\n", a, b, c); } int main() { gn(); return 0; } ``` 在这个示例中,我们了一个形式为y=a*exp(b*x)+c的曲线,其中a、b、c是待的参数,x和y是数据点。我们使用高斯牛顿迭代计算出最优的参数值,使得曲线与数据点的残差平方和最小。最终输出的参数值a、b、c。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值