LeetCode 322 零钱兑换(coinChange)

本文介绍如何使用动态规划解决货币找零问题,探讨了递归、备忘录法和数组优化的方法,并通过示例展示了从给定硬币面额数组中凑出指定金额所需的最少硬币数量。关键概念包括状态转移方程、base case 和子问题重用。
摘要由CSDN通过智能技术生成

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change
解题思路:

先确定状态,原问题和子问题中变化的变量。由于硬币无限,唯一的状态就是金额amount。

然后确定dp函数的定义:当前目标金额是n,至少需要dp(n)个硬币凑出该金额。

然后确定选择(择优),就是对每个状态,可以做出什么选择,改变当前状态。当前问题,不论目标金额是多少,选择coins中的一个硬币,目标金额就减少。

明确base case,目标金额为0,硬币数为0;

目标金额小于0时,无解,返回-1。

/**
 * 给你 k 种⾯值的硬币,⾯值分别为 c1, c2 ... ck ,每种硬币的数量⽆限,再给⼀个总⾦额 amount, 
 * 问你最少需要⼏枚硬币凑出这个⾦额,如果不可能凑出,算法返回 -1 。
 */
public class CoinChangeSolution {
    /**
     * 1.递归解法
     * 递归解法时间复杂度:子问题总数 * 每个子问题的时间
     * O(n^k) * O(k) = O(k * n^k)
     */
    public int coinChange(int[] coins, int amount) {
        //base case
        if (amount == 0) return 0;
        if (amount < 0) return -1;
        //设最大为初始值
        int res = Integer.MAX_VALUE;
        for (int coin : coins) {
            int subProblem = coinChange(coins, amount - coin);
            //子问题无解,跳过
            if (subProblem == -1) continue;
            res = Math.min(res, 1 + subProblem);
        }
        return res != Integer.MAX_VALUE ? res : -1;
    }

    /**
     *2.带备忘录的递归解法
     */
    public int coinChangeWithMap(int[] coins, int amount) {
        Map<Integer, Integer> memo = new HashMap<>(amount);
        return dpWithMap(coins, amount, memo);
    }

    public int dpWithMap(int[] coins, int amount, Map<Integer, Integer> memo) {
        //使用map,节约重复子问题耗时
        if (memo.get(amount) != null) return memo.get(amount);
        //base case
        if (amount == 0) return 0;
        if (amount < 0) return -1;
        //设最大为初始值
        int res = Integer.MAX_VALUE;
        for (int coin : coins) {
            int subProblem = dpWithMap(coins, amount - coin, memo);
            //子问题无解,跳过
            if (subProblem == -1) continue;
            res = Math.min(res, 1 + subProblem);
        }
        memo.put(amount, res != Integer.MAX_VALUE ? res : -1);
        return memo.get(amount);
    }

    /**
     *3.dp数组解法
     *自底向上,消除子问题
     */
    public int coinChangeDP(int[] coins, int amount) {
        int initValue = amount + 1;
        int[] dp = new int[initValue];
        for (int i = 0;i < dp.length; i++) dp[i] = initValue;
        dp[0] = 0;
        for (int i = 0;i < dp.length; i++) {
            //内循环求所有子问题 + 1的最小值
            for (int coin : coins) {
                //子问题无解,跳过
                if (i - coin < 0) continue;
                dp[i] = Math.min(dp[i], 1 + dp[i - coin]);
            }
        }
        return dp[amount] == initValue ? -1 : dp[amount]; 
    }

   /**
     * 测试类
     */
    @Test
    public void testCoinChange() {
        int[] coins = {1,2,5};
        int amount = 36;
        System.out.println(System.currentTimeMillis());
        System.out.println(coinChange(coins, amount));
        System.out.println(System.currentTimeMillis());
        System.out.println(coinChangeWithMap(coins, amount));
        System.out.println(System.currentTimeMillis());
        System.out.println(coinChangeDP(coins, amount));
        System.out.println(System.currentTimeMillis());
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值