复数域内的微分解法(温度扩散模型)

本文介绍了如何使用复数域内的微分解法解决温度扩散模型,通过设定k和w的值,推导出解的表达式,并通过编程验证了解的正确性,展示了复数域解法在处理涉及cos和sin的问题时的优势。
摘要由CSDN通过智能技术生成
复数域内的微分解法(温度扩散模型)
将以前的温度扩散模型做些改变有:
y'-ky=k*cos wx   (k为整数)
在复数域内解答,先对左边部分采用标准解法有:
u=A*e^(-kx)
这样有:
(yy*u)'=Re{ k*u*e^i*wx }
GO
(yy*u)'=Re{ k*A*e^(-kx)*e^i*wx }
Go
(yy*u)'=Re{ k*A*e^((iw-k)x) }
GO
yy*u=Re{ k*A/((iw-k)*e^((iw-k)x) }  +C   (c为常数)
GO
yy=1/A*e^(kx) * { Re{ k*A/((iw-k)*e^((iw-k)x) }  +C }
Go
yy= Re{ k*1/((iw-k)*e^(iwx) }  +C *1/A*e^(kx)
GO
yy= Re{ k*(iw+k)/{(iw+k)*(iw-k)}*e^(iwx) }  +C*e^(kx)   (c为新常数)
Go
yy= Re{ -k*(iw+k)/(w^2+k^2)*e^(iwx) }  +C*e^(kx)
注意这里设置sin s=w/sqrt((w^2+k^2)),cos s=k/sqrt((w^2+k^2))
GO
yy= Re{ -k*sqrt((w^2+k^2))(cos s + i*sin s)/(w^2+k^2)*e^(iwx) }  +C*e^(kx)
Go
yy= Re{ -k*(cos s + i*sin s)/sqrt((w^2+k^2))*e^(iwx) }  +
复数上的常微分方程的实分解定理是指,对于一类特定的复数上的常微分方程,我们可以将其转化为等价的实数上的常微分方程组,并且这个转化过程是唯一的。 具体来说,假设我们有一个形如 $y'(z) = f(z,y(z))$ 的复数上的常微分方程,其中 $f(z,y)$ 是一个复解析函数。我们可以将 $y(z)$ 写成 $y(z) = u(z) + iv(z)$ 的形式,其中 $u(z)$ 和 $v(z)$ 是实函数。 然后,我们对 $u(z)$ 和 $v(z)$ 分别求导,得到: $$ \begin{aligned} u'(z) &= \frac{1}{2}[f(z,u(z)+iv(z))+\overline{f(z,u(z)+iv(z))}\,] \\ v'(z) &= \frac{1}{2i}[f(z,u(z)+iv(z))-\overline{f(z,u(z)+iv(z))}\,] \end{aligned} $$ 这样,我们就得到了一个等价的常微分方程组: $$ \begin{aligned} u'(z) &= \frac{1}{2}[f(z,u(z)+iv(z))+\overline{f(z,u(z)+iv(z))}\,] \\ v'(z) &= \frac{1}{2}[f(z,u(z)+iv(z))- \overline{f(z,u(z)+iv(z))}\,]i \end{aligned} $$ 需要注意的是,上述转换过程只是将原本的复数上的常微分方程转化为了等价的实数上的常微分方程组,而不是将其直接解析地转化为实数上的常微分方程。因此,我们仍然需要使用实数上的常微分方程的理论和方法来研究这个等价的常微分方程组。 总的来说,复数上的常微分方程的实分解定理为我们研究复数上的常微分方程提供了重要的工具和方法,使得我们可以将其转化为等价的实数上的常微分方程组,更方便地进行研究和解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值