人工智能训练师如何做文本数据标注,从情感分析和实体分析两个个场景分析

在 NLP 任务中,情感分析实体分析是两个重要的文本标注场景。高质量的文本数据标注对于情感分类、命名实体识别(NER)、关系抽取等任务至关重要。

本指南将详细介绍:

  • 情感分析标注(Sentiment Analysis)
  • 实体分析标注(Named Entity Recognition, NER)
  • 手动标注工具
  • 自动化标注
  • 数据存储与管理
  • 主动学习优化标注
  • Python 代码示例

1. 情感分析(Sentiment Analysis)标注

1.1 情感分析简介

文本情感分析(Sentiment Analysis)是 NLP 任务之一,主要用于识别文本的情绪倾向,例如:

  • 二分类:正面(positive)、负面(negative)
  • 三分类:正面(positive)、中性(neutral)、负面(negative)
  • 多级分类:1-5 星评分
  • 细粒度情感分析:愤怒、喜悦、悲伤、惊讶等

数据标注任务主要包括:

  1. 文本预处理
  2. 手动或自动标注
  3. 数据存储
  4. 质量评估

1.2 手动标注工具

Label Studio

Label Studio 是一个开源的数据标注工具,支持文本分类、情感分析、NER等任务。

安装 Label Studio

pip install label-studio
label-studio start
  • 选择 "Text Classification" 任务
  • 上传文本数据
  • 进行人工标注
  • 导出 JSON/CSV 格式

1.3 自动标注(TextBlob + Transformers)

如果已经有预训练情感分析模型,可以自动标注数据。

安装 TextBlob

pip install textblob
使用 TextBlob 进行情感分析

from textblob import TextBlob

text = "I love this product, it's amazing!"
sentiment = TextBlob(text).sentiment.polarity  # 范围:-1(负面)到 1(正面)

label = "positive" if sentiment > 0 else "negative" if sentiment < 0 else "neutral"
print("情感标注:", label)

输出

情感标注: positive

1.4 使用 Hugging Face Transformers 进行情感分析

pip install transformers torch

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

text = "I really enjoy this movie, it's fantastic!"
result = classifier(text)
print(result)

输出示例

[{"label": "POSITIVE", "score": 0.99}]

1.5 生成 JSON 标注数据

import json

annotations = [
    {"text": "I love this product!", "label": "positive"},
    {"text": "This is terrible!", "label": "negative"}
]

with open("sentiment_annotations.json", "w") as f:
    json.dump(annotations, f, indent=4)

print("情感标注数据已保存")

输出格式(JSON)

[
    {"text": "I love this product!", "label": "positive"},
    {"text": "This is terrible!", "label": "negative"}
]

2. 实体分析(Named Entity Recognition, NER)标注

2.1 实体分析简介

命名实体识别(NER)用于提取文本中的特定实体,例如:

  • 人名(PERSON):Elon Musk
  • 地点(LOCATION):New York
  • 组织(ORGANIZATION):Google
  • 日期(DATE):2024-02-22
  • 产品(PRODUCT):iPhone 15

数据标注任务主要包括:

  1. 文本预处理
  2. 手动或自动标注
  3. 数据存储
  4. 质量评估

2.2 手动标注工具

Prodigy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宝哥Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值