【大模型+知识图谱】哈工大版chinese-roberta-wwm-ext模型部署应用
- 1.模型介绍
-
- (1)RoBERTa的起源与改进
- (2)Chinese RoBERTa-wwm-ext的特点
- (3)PyTorch中的应用
- (4)总结
- 2.模型下载
- 3.GPU显卡配置
1.模型介绍
RoBERTa(Robustly Optimized BERT Pretraining Approach)是BERT(Bidirectional Encoder Representations from Transformers)模型的一个重要改进版本,由阿里云的研究团队提出。而Chinese RoBERTa-wwm-ext则是针对中文文本的预训练模型,它在哈工大的研究团队手中进一步优化,特别适用于中文自然语言处理任务。在本篇中,我们将深入探讨这一模型的背景、特点以及在PyTorch框架下的具体应用。
(1)RoBERTa的起源与改进
RoBERTa的诞生源于对BERT模型的反思,BERT通过遮蔽语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两大数据预训练任务,取得了惊人的效果。然而,RoBERTa认为NSP任务对于模型的提升有限,并提出了取消NSP任务,增加训练数据量和训练步数等改进策略,使得模型的性能得到了显著提升。