【大模型+知识图谱】哈工大版chinese-roberta-wwm-ext模型介绍、下载部署和GPU显卡配置

【大模型+知识图谱】哈工大版chinese-roberta-wwm-ext模型部署应用

  • 1.模型介绍
    • (1)RoBERTa的起源与改进
    • (2)Chinese RoBERTa-wwm-ext的特点
    • (3)PyTorch中的应用
    • (4)总结
  • 2.模型下载
  • 3.GPU显卡配置

1.模型介绍

RoBERTa(Robustly Optimized BERT Pretraining Approach)是BERT(Bidirectional Encoder Representations from Transformers)模型的一个重要改进版本,由阿里云的研究团队提出。而Chinese RoBERTa-wwm-ext则是针对中文文本的预训练模型,它在哈工大的研究团队手中进一步优化,特别适用于中文自然语言处理任务。在本篇中,我们将深入探讨这一模型的背景、特点以及在PyTorch框架下的具体应用。

(1)RoBERTa的起源与改进

RoBERTa的诞生源于对BERT模型的反思,BERT通过遮蔽语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两大数据预训练任务,取得了惊人的效果。然而,RoBERTa认为NSP任务对于模型的提升有限,并提出了取消NSP任务,增加训练数据量和训练步数等改进策略,使得模型的性能得到了显著提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识靠谱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值