MATLAB 用语句新建和打开 Simulink 模型

可以在命令行新建 Simulink 模型,如图:

在这里插入图片描述

要注意,这里的两个内置函数,即 new_system 和 open_system 都省略了后缀名 slx。

用 open_system 函数可以打开既有模型,如图:

在这里插入图片描述

### 如何在 Simulink 中集成调用 MATLAB 创建的预测模型 为了在Simulink环境中成功调用由MATLAB创建的预测模型,需遵循一系列具体操作流程。这不仅涉及到了解Simulink的基础功能,还涉及到如何有效地利用MATLAB的功能来增强Simulink的能力。 #### 打开Simulink并准备新的或现有模型 启动MATLAB之后,在命令窗口输入`simulink`并按下Enter键开启Simulink界面;或者通过MATLAB主页选择Simulink图标进入[^1]。对于已有模型可以直接打开编辑,而对于新项目则应选择“新建”->“模型”,以此为基础开始构建所需的预测系统架构。 #### 添加必要的模块至Simulink模型Simulink库浏览器中挑选适合于当前任务需求的各种组件,比如信号源、数学运算单元以及控制器等,并将其拖曳放置到工作区内的空白画布上形成初步框架。特别地,当目的是要引入外部训练好的机器学习或其他类型的预测算法时,“MATLAB Function”模块显得尤为重要——它允许用户编写自定义代码片段从而实现复杂逻辑处理或是直接嵌入预先存在的.mat文件形式存储的数据集/模型对象[^2]。 #### 导入MATLAB函数库与加载模型 确保所使用的任何第三方工具箱均已正确安装激活后,下一步就是把先前提到过的那些预训练完成后的预测模型导入进来作为后续计算的核心部分之一。此过程通常意味着要在脚本内部指定路径指向目标位置(.mat),并通过load()语读取其中的内容以便进一步加工使用[^3]。 #### 数据传递及结果解析 一旦上述准备工作就绪,则可以考虑怎样让实际采集得到的真实世界数据流经整个管道直至最终抵达目的地。“Inport” “Outport” 是两个用来桥接外界接口同内部网络之间联系的重要概念,它们帮助实现了双向的信息交换机制。与此同时,针对不同应用场景下的特殊要求(如分类、回归分析),可能还需要额外部署一些辅助性的转换层以确保输出格式符合预期标准。 ```matlab % 假设我们有一个名为 'myPredictiveModel.mat' 的文件包含了我们的预测模型 function y = fcn(u) % 加载模型 load('path_to_model/myPredictiveModel.mat', 'trainedModel'); % 使用模型进行预测 y = trainedModel.predictFcn(u); end ``` #### 配置仿真参数其他选项 最后但同样重要的是调整仿真的各项设定值,包括但不限于总持续时间长度、积分方法的选择等等。这些细节上的差异往往会对整体性能造成显著影响,因此务必仔细权衡考量后再做决定[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值