[电路]5-电压源、电流源的串联和并联

[电路]系列文章目录

1-发出功率和吸收功率关系
2-独立源和受控源
3-基尔霍夫定律
4-两端电路等效变换、电阻串并联
5-电压源、电流源的串联和并联



一、理想电压源的串并联

1.串联

理想电压源串联
根据各个理想电压源的电压参考方向,得到如下表达式:
u S = u S 1 + u S 2 = ∑ u S k u_S = u_{S1} + u_{S2} = \sum u_{Sk} uS=uS1+uS2=uSk

2.并联

理想电压源并联
具有相同电压的理想电压源才可以并联,有如下表达式:
u S = u S 1 = u S 2 u_S = u_{S1} = u_{S2} uS=uS1=uS2

3.电压源与支路串联

电压源与支路串联
串联电流相等,根据KVL可得到如下表达式:
u = u S 1 + R 1 i + u S 2 + R 2 i = u S 1 + u S 2 + ( R 1 + R 2 ) i = u S + R i u = u_{S1} + R_1i + u_{S2} + R_2i =u_{S1} + u_{S2} + (R_1 + R_2)i = u_S + Ri u=uS1+R1i+uS2+R2i=uS1+uS2+(R1+R2)i=uS+Ri

4.电压源与支路并联

电压源与支路并联
电压源与任意元件并联,需要满足并联元件两端电压与电压源电压相同,因此任意元件可以是如下的几种元件:
(1)电阻;
(2)电流源;
(3)受控电流源;
(4)电压源(电压值相等)。
注意:受控电压源 不可以作为并联元件,因为受控电压源的电压随着控制量变化而变化,产生的电压值不是固定不变的,因此不能与独立电压源并联。

二、理想电流源的串并联

1.串联

理想电流源串联
具有相同电流的理想电流源才可以串联,有如下表达式:
i S = i S 1 = i S 2 i_S = i_{S1} = i_{S2} iS=iS1=iS2

2.并联

理想电流源并联
根据各个理想电流源的电流参考方向,得到如下表达式:
i S = i S 1 + i S 2 + ⋯ + i S n = ∑ i S k i_S = i_{S1} + i_{S2} + \cdots + i_{Sn} = \sum i_{Sk} iS=iS1+iS2++iSn=iSk

3.电流源与支路串联

电流源与支路串联
电流源与任意元件串联,需要满足串联元件流过电流与电流源的电流值相同,因此任意元件可以是如下的几种元件:
(1)电阻;
(2)电压源;
(3)受控电压源;
(4)电流源(电流值相等)。
注意:受控电流源 不可以作为串联元件,因为受控电流源的电流随着控制量变化而变化,产生的电流值不是固定不变的,因此不能与独立电流源串联。

4.电流源与支路并联

电流源与支路并联
并联元件电压相等,根据KCL可得到如下表达式:
i = i S 1 − u R 1 + i S 2 − u R 2 = i S 1 + i S 2 − ( 1 R 1 + 1 R 1 ) u = i S − u R i = i_{S1} - \frac{u}{R_1} + i_{S2} - \frac{u}{R_2} =i_{S1} + i_{S2} - ( \frac{1}{R_1} + \frac{1}{R_1})u = i_S - \frac{u}{R} i=iS1R1u+iS2R2u=iS1+iS2(R11+R11)u=iSRu



更多内容关注微信公众号:城南以南95
愿余生,不负岁月,不负自己。
喜欢就点个赞吧
<think>我们注意到用户问题:“电流源串联等效于电压源并联的原因”。根据之前的回答,这实际上涉及到源变换(source transformation)的概念。但需要明确的是,电流源串联电压源并联本身并不是直接等效的,而是通过源变换,一个电压源串联电阻可以等效变换为一个电流源并联电阻。因此,我们需要重新审视问题,并基于网络搜索来确认。 然而,根据电路理论,理想电流源串联并不直接等效于理想电压源并联,因为它们具有不同的特性。实际上,源变换是指一个实际电压源模型(理想电压源与电阻串联)可以等效变换为一个实际电流源模型(理想电流源与电阻并联),反之亦然。 因此,用户的问题可能是指实际电源模型的等效变换。我们将通过搜索来确认并解释原因。 搜索关键词:电流源串联等效电压源并联原因 但请注意:严格来说,多个电流源串联或者多个电压源并联并不是直接等效的,而是每个实际电源模型(包含内阻)可以相互变换。 根据搜索结果(基于已知电路理论): 1. 源变换的原理:一个电压源$V_s$与一个电阻$R_s$串联的组合,可以等效变换为一个电流源$I_s$与同一个电阻$R_s$并联的组合,其中$I_s = V_s / R_s$。同样,反向变换为$V_s = I_s \times R_s$。 2. 等效的条件是:两种模型在端口处的伏安特性相同。即对于任意负载电阻$R_L$,两种模型提供的电压电流相同。 3. 验证方法: - 开路电压:在两种模型中,当负载开路($R_L\rightarrow\infty$)时,端口电压均为$V_s$(对于电压源串联电阻模型)$I_s \times R_s$(对于电流源并联电阻模型)。因此,若$V_s=I_s\times R_s$,则开路电压相同。 - 短路电流:当端口短路时,电压源串联电阻模型的短路电流为$V_s/R_s$,电流源并联电阻模型的短路电流为$I_s$。因此,若$I_s=V_s/R_s$,则短路电流相同。 - 由于开路电压短路电流相同,且两种模型都是线性的,因此对任意负载都等效。 4. 注意:理想电流源(无并联电阻)不能直接转换为理想电压源(无串联电阻),因为理想电流源的内阻为无穷大,而理想电压源的内阻为零。因此,源变换要求存在电阻,且电阻值相同。 所以,用户问题中的“电流源串联”实际上应该是指一个电流源与电阻并联的组合(即诺顿模型)中的电流源部分,而“电压源并联”应该是指一个电压源与电阻串联的组合(戴维南模型)中的电压源部分。但严格来说,并不是电流源串联等于电压源并联,而是诺顿模型等效于戴维南模型。 因此,回答应该聚焦于源变换的原理条件。 根据以上分析,生成答案如下: 电流源串联等效于电压源并联的原因源于电路理论中的源变换原理,该原理描述了实际电源的两种模型(戴维南模型诺顿模型)在满足特定条件时可以相互转换。需要注意的是,理想电流源串联或理想电压源并联不能直接等效转换,实际应用中必须包含内阻。以下是详细解释: 源变换的核心是保证两种模型在端口处具有相同的伏安特性。一个电压源$V_s$与电阻$R_s$串联的戴维南模型,可以等效变换为一个电流源$I_s$与电阻$R_s$并联的诺顿模型。变换关系为: $$ I_s = \frac{V_s}{R_s} $$ 或 $$ V_s = I_s R_s $$ 等效性验证: 开路电压:戴维南模型的开路电压为$V_s$,诺顿模型的开路电压为$I_s R_s$。当$V_s = I_s R_s$时,两者相等。 短路电流:戴维南模型的短路电流为$\frac{V_s}{R_s}$,诺顿模型的短路电流为$I_s$。当$I_s = \frac{V_s}{R_s}$时,两者相等。 由于两种模型的开路电压短路电流相同,且均为线性模型,因此对任意负载电阻$R_L$,两种模型提供的电压电流相同。 应用场景: 源变换在电路分析中用于简化电路,例如将复杂网络简化为戴维南或诺顿等效电路。通过交替使用电压源串联电阻电流源并联电阻的等效变换,可以合并元件、减少计算量。典型应用包括多级放大器分析、电源设计及故障诊断。 限制条件: 理想电流源(内阻无穷大)不能转换为理想电压源(内阻为零),反之亦然。源变换仅适用于实际电源模型(即包含非零内阻)。多个电源串联并联时需注意拓扑约束:电压源串联可叠加,电流源并联可叠加,但不同内阻的电源需谨慎处理。 因此,准确的说法是:一个实际电压源模型(电压源串联电阻)可以等效变换为一个实际电流源模型(电流源并联电阻),而不是电流源串联直接等于电压源并联。用户问题中的表述是源变换概念的简化表述。 根据要求,我们将答案组织为多个部分: 源变换原理: 实际电源的两种模型(戴维南模型诺顿模型)在端口特性上等效。变换公式为$I_s = \frac{V_s}{R_s}$或$V_s = I_s R_s$,其中$R_s$为内阻。 等效性验证: 两种模型在相同负载下产生相同的电压电流输出。通过计算开路电压短路电流的一致性证明等效性。 应用方法: 在电路简化中,可将电压源串联电阻的子电路替换为电流源并联电阻,反之亦然。变换时保持内阻不变,并根据公式调整源值。 注意事项: 源变换仅适用于线性电阻电路。理想电源(无内阻)不可直接变换。多个电源变换时需确保内阻一致或分别处理。 最后,生成相关问题。 </think>### 电流源串联等效于电压源并联的原因 该等效性源于**电源变换定理**(Source Transformation Theorem),其核心是通过数学等效将戴维南电路电压源串联电阻)转换为诺顿电路电流源并联电阻),反之亦然。以下是详细原理验证过程: #### **1. 等效变换公式与条件** - **戴维南模型 → 诺顿模型**: 电压源 $V_s$ 串联电阻 $R_s$ 可等效为电流源 $I_s$ 并联相同电阻 $R_s$,满足: $$ I_s = \frac{V_s}{R_s} $$ 例如:$V_s=10\text{V}$ 串联 $R_s=5\Omega$ 等效于 $I_s=2\text{A}$ 并联 $5\Omega$。 - **诺顿模型 → 戴维南模型**: 电流源 $I_s$ 并联电阻 $R_s$ 可等效为电压源 $V_s$ 串联相同电阻 $R_s$,满足: $$ V_s = I_s \times R_s $$ #### **2. 等效性验证** 通过端口特性一致性证明: - **开路电压相同**: - 戴维南模型:$V_{OC} = V_s$ - 诺顿模型:$V_{OC} = I_s \times R_s$ 当 $V_s = I_s R_s$ 时,两者相等。 - **短路电流相同**: - 戴维南模型:$I_{SC} = \frac{V_s}{R_s}$ - 诺顿模型:$I_{SC} = I_s$ 当 $I_s = \frac{V_s}{R_s}$ 时,两者相等。 #### **3. 负载特性一致性** 对任意负载电阻 $R_L$,两种模型输出相同的电压 $V_L$ 电流 $I_L$: - **戴维南模型输出**: $$ V_L = V_s \frac{R_L}{R_s + R_L}, \quad I_L = \frac{V_s}{R_s + R_L} $$ - **诺顿模型输出**: $$ V_L = I_s \frac{R_s R_L}{R_s + R_L}, \quad I_L = I_s \frac{R_s}{R_s + R_L} $$ 代入 $I_s = \frac{V_s}{R_s}$ 后,结果与戴维南模型完全一致。 #### **4. 应用场景与限制** - **实用场景**: - 简化电路分析(如节点电压法或网孔电流法)。 - 电源设计时灵活选择电压型或电流型拓扑。 - **关键限制**: - 仅适用于**实际电源模型**(含非零内阻 $R_s$)。 - 理想电流源($R_s \to \infty$)与理想电压源($R_s=0$)不能直接互换。 - 多电源并联/串联时需确保内阻匹配(见下图等效过程)。 #### **5. 等效变换示例** ```text 戴维南电路: 诺顿电路: +----R_s----+ +----R_s----+ | | | | V_s | I_s | | | | | +-------+---+ +-------+---+ | | 负载 R_L 负载 R_L ``` 变换后负载 $R_L$ 的电压/电流保持不变。 ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值