一 步长
步长是卷积操作的核心。通过步长的变换,可以得到想要的不同类型的卷积操作。先以窄卷积为例,看看它的操作及相关术语。
上图中5*5大小的矩阵代表图片,每个图片右侧的3*3矩阵代表卷积核,最右侧的3*3矩阵为计算完的结果feature map。
卷积操作仍然是将卷积核(filter)对应图片(image)中的矩阵数据一一相乘,再相加。上图中,第一行feature map中的第一个元素,是由image块中前3行3列中的每个元素与filter中对应元素相乘再相加得到的(4=1*1+1*0+1*1+0*0+1*1+1*0+0*1+0*0+1*1)。
步长(stride)表示卷积核在图片上移动的格数。
当步长为1的情况下,上图第二行右边的feature map块里的第二个元素3,是由卷积核计算完第一个元素4,右移一格后计算得到,相当于图片中的前3行第2到第4列围成的3*3矩阵与卷积核各对应元素进行相乘相加操作(3=1*1+1*0+0*1+1*0+1*1+1*0+0*1+1*0+1*1)
当步长为2的情况下,就代表每次移动2个格,最终会得到上图第二行左边的2*2矩阵块的结果。