康托尔(Cantor)是如何证明实数集是不可数的

事实上,对于任何一个集合S,如果你能找出一种方法把集合里的所有元素按顺序一个不漏地罗列出来,写成a1, a2, a3, a4, … 的形式,那么这个集合就是和自然数集等势的,因为序列的下标和自然数集就已经构成了一个一一对应的关系。我们把所有与自然数集等势的集合叫做可数集(countable set),因为它们是可以数出来的。
    并不是所有集合都是可数的。Cantor证明了,实数区间[0,1]是不可数的集合,它的势比自然数集大。你找不出什么方法能把0到1之间的所有实数一个不漏地排列出来。这个证明方法很巧妙,假设你把实数区间[0,1]里的所有数按照某种顺序排列起来,那么我总能找到至少一个0到1之间的实数不在你的列表里。把你的列表上的数全写成0到1之间的小数:

a1 = 0.0147574628…
a2 = 0.3793817237…
a3 = 0.2323232323…
a4 = 0.0004838211…
a5 = 0.9489129145…
………

    那么我就构造这么一个小数,小数点后第一位不等于a1的第一位,小数点后第二位不等于a2的第二位,总之小数点后第i位不等于ai的第i位。这个数属于实数区间[0,1],但它显然不在你的列表里。这样,我就证明了实数区间是不可数的。

https://blog.csdn.net/paxhujing/article/details/51655853

转载于:https://my.oschina.net/u/3424826/blog/1855547

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
康托尔七分集是康托尔集的一种变体,它是通过将一条线段分成七等分来构造的。具体构造方法是将原始线段的中间三分之一去掉,然后在剩余的两段线段的中间各取三分之一,再去掉这两段线段的中间三分之一,以此类推,重复进行七次。最终得到的集合就是康托尔七分集。 康托尔七分集与康托尔三分集类似,具有无穷多个点,并且这些点处于非均匀分布状态。康托尔七分集也具有自相似性,即其局部与整体是相似的,因此也是一个分形系统。 康托尔七分集的构造方法可以通过递归算法来实现,每次将线段分成七等分,并去掉中间三分之一的部分,然后对剩余的两段线段进行相同的操作,直到达到所需的次数。 以下是一个示例代码,用于构造康托尔七分集: ```python import matplotlib.pyplot as plt def cantor_set(start, end, depth): if depth == 0: return [(start, end)] interval = (end - start) / 7 segments = [] for i in range(1, 7): left = start + (i - 1) * interval right = start + i * interval segments.extend(cantor_set(left, right, depth - 1)) return segments segments = cantor_set(0, 1, 7) # 绘制康托尔七分集 for segment in segments: plt.plot([segment[0], segment[1]], [0, 0], color='black') plt.show() ``` 这段代码使用了matplotlib库来绘制康托尔七分集的图形。通过调整代码中的参数,可以改变康托尔七分集的深度和长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值