康托尔三分集是不可列集的证明

后面需要用到的知识:

闭集的定义:如果集合 S S S 中包含了它的所有聚点,则称 S S S 为闭集。

康托尔三分集的定义:

将基本区间 [ 0 , 1 ] [0,1] [0,1] 用分点 1 / 3 1/3 1/3 2 / 3 2/3 2/3 三等分,并除去中间的开区间 ( 1 / 3 , 2 / 3 ) (1/3,2/3) (1/3,2/3). 再把余下两个闭区间各三等份,并除去中间的开区间 ( 1 / 9 , 2 / 9 ) (1/9,2/9) (1/9,2/9), ( 7 / 9 , 8 / 9 ) (7/9,8/9) (7/9,8/9)。然后将余下的四个闭区间同法处理,如此等等,这样便得到康托尔三分集 P 0 P_0 P0


证明康托尔三分集是不可列集:

假设 P 0 P_0 P0 是可列的,将 P 0 P_0 P0 中点编号成点列

x 1 , x 2 , ⋯   , x k , ⋯   , x_1,x_2,\cdots,x_k,\cdots, x1,x2,,xk,,

也就是说, P 0 P_0 P0 中任一点必在上述点列中出现。显然, [ 0 , 1 / 3 ] [0,1/3] [0,1/3] [ 2 / 3 , 1 ] [2/3,1] [2/3,1] 中应有一个不含有 x 1 x_1 x1,用 I 1 I_1 I1 表示中国闭区间。将 I 1 I_1 I1 三等分后所得的左右两个闭区间中,应有一个不含 x 2 x_2 x2,用 I 2 I_2 I2 表示他。然后用 I 3 I_3 I3 表示三等分 I 2 I_2 I2 时不含 x 3 x_3 x3 的左或右那个闭区间,如此等等…这样,根据归纳法,得到一个闭区间列 { I k } k ∈ N \{I_k\}_{k\in N} {Ik}kN.由所述取法知,

I 1 ⊃ I 2 ⊃ ⋯ I k ⊃ ⋯ I_1\supset I_2\supset \cdots I_k\supset \cdots I1I2Ik

x k ∉ I k , k ∈ N x_k\notin I_k,k\in N xk/Ik,kN

同时,易见 I k I_k Ik 的长为 1 / 3 k → 0 ( k → ∞ ) 1/3^k\to 0(k\to \infty) 1/3k0(k).由闭区间套定理,存在点 ξ ∈ I k , k ∈ N \xi\in I_k,k\in N ξIk,kN.又因为 ξ \xi ξ I k I_k Ik 等端点的聚点,从而是闭集 P 0 P_0 P0 的聚点,故 ξ ∈ P 0 \xi \in P_0 ξP0。又因为 x k ∉ I k . k ∈ N x_k\notin I_k.k\in N xk/Ik.kN,所以 ξ ≠ x k , k ∈ N \xi\neq x_k,k\in N ξ=xk,kN。矛盾,所以 P 0 P_0 P0 不可列。


2021年9月23日16:18:15

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值