《GAPNet: Graph Attention-based Point Neural Network for Exploiting Local Feature of Point Cloud》
研究问题 | 如何更好地提取点云的局部特征 |
主要想法 |
|
解决方案 | self_attetion的实现: 先通过MLP将每个点的特征映射到更高维的空间,然后再对点的特征通道进行加权求和,进而得到每个点的global feature neighboring atteion的实现: 采用类似DGCNN的方式,我们先以原始点云中的每个点作为中心点构建相应的kNN graph,然后再基于kNN graph进行进一步的特征提取,从而得到每个点的local feature和local weights graph attention: 通过self-attetion我们可以得到每个中心点的权重,通过neighboring attention我们可以得到中心点周围每个edge feature的权重,最后我们要做的就是基于attetion weights对边的信息和点的信息进行整合,进而得到最后的总的特征 Multi-head attention: 并行重复上述graph attention的过程,以获取更加丰富的几何信息。
|