论文阅读之《GAPNet: Graph Attention-based Point Neural Network for Exploiting Local Feature of Point Cloud

GAPNet是一种基于图注意力机制的点神经网络,旨在从点云数据中高效提取局部特征。该方法结合self-attention和neighboring attention,通过多头注意力机制获取丰富的语义特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《GAPNet: Graph Attention-based Point Neural Network for Exploiting Local Feature of Point Cloud》

研究问题如何更好地提取点云的局部特征
主要想法
  • 采用self-attention和neighboring attention的机制,一方面通过self-attetion来提取输入点自身的几何特征,另一方面则通过neighboring atteion来提取输入点与周围邻居之间的关系
  • 采用multi-head的方式来获取原始点云中更为丰富的语义特征
解决方案

self_attetion的实现:

先通过MLP将每个点的特征映射到更高维的空间,然后再对点的特征通道进行加权求和,进而得到每个点的global feature

neighboring atteion的实现:

采用类似DGCNN的方式,我们先以原始点云中的每个点作为中心点构建相应的kNN graph,然后再基于kNN graph进行进一步的特征提取,从而得到每个点的local feature和local weights

graph attention:

通过self-attetion我们可以得到每个中心点的权重,通过neighboring attention我们可以得到中心点周围每个edge feature的权重,最后我们要做的就是基于attetion weights对边的信息和点的信息进行整合,进而得到最后的总的特征

Multi-head attention:

并行重复上述graph attention的过程,以获取更加丰富的几何信息。

 

### 基于点云的3D场景图生成中的Transformer应用 #### 背景介绍 在基于点云的3D场景图生成领域,Transformer作为一种强大的序列建模工具被广泛研究并应用于处理复杂的几何数据结构。通过引入自注意力机制(Self-Attention),Transformer能够捕捉全局依赖关系,在节点特征提取和边特征生成方面表现出显著优势。 #### Transformer的核心作用 Transformer的主要功能在于其能够有效地学习点云中不同部分之间的相互关系。具体而言,它通过对输入点云进行编码来捕获局部和全局上下文信息[^2]。这种能力使得Transformer非常适合用于构建高质量的3D场景图表示。 #### Graph Embedding Layer (GEL) 和 Semantic Injection Layer (SIL) 在提到的研究工作中,模型设计包含了两个重要组件——Graph Embedding Layer(GEL)以及Semantic Injection Layer(SIL)。 - **Graph Embedding Layer**: 此层负责将原始点云转换成具有语义意义的嵌入向量形式。这些嵌入不仅保留了几何特性还融合了来自其他传感器(如RGB图像)的信息。 - **Semantic Injection Layer**: 这一层进一步增强了由GEL产生的初始嵌入,注入额外的高层次语义理解到每一个节点及其连接边上,从而提升最终预测准确性。 #### Node and Edge Feature Generation 对于节点与边缘特征生成过程来说,利用Transformer架构可以实现更精细且全面的关系表达。例如,在给定一组三维坐标作为输入时,经过多头注意力计算后得到的新表征既考虑到了单个点的重要性也兼顾整体分布模式的影响。 以下是简化版代码示例展示如何使用PyTorch框架搭建基本版本的Point Cloud Transformer: ```python import torch.nn as nn import torch class PointCloudTransformer(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6): super(PointCloudTransformer, self).__init__() encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) def forward(self, src): out = self.transformer_encoder(src.permute(1,0,2)) return out.permute(1,0,2) # Example usage model = PointCloudTransformer() input_tensor = torch.rand((32, 1024, 512)) # Batch size of 32 with 1024 points each having a dimensionality of 512 output = model(input_tensor) print(output.shape) # Should output the same shape as input tensor ``` 此段脚本定义了一个简单的变压器网络实例化对象`PointCloudTransformer`, 它接受批量大小为32的数据集,其中每个样本包含1024个维度均为512维的点位信息,并返回相同形状的结果张量。 #### 总结 综上所述,Transformers因其卓越的能力而成为解决复杂任务的有效手段之一,特别是在涉及大量离散单元间交互分析的情况下更是如此。它们帮助我们更好地理解和描述真实世界环境下的物体布局情况,推动了计算机视觉及相关学科的发展进程。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值