3D检测
文章平均质量分 75
Just Go For It Now
这个作者很懒,什么都没留下…
展开
-
ISS点云内部形状特征描述子
ISS点云内部形状特征描述子的提取流程 针对输入点云的每个点p构建一个球形邻域 针对球形邻域内的点,依距离的反比计算每个点对中心点的贡献 计算每个点的协方差矩阵,并记协方差矩阵的三个特征值分别为λ1\lambda_{1}λ1、λ2\lambda_{2}λ2、λ3\lambda_{3}λ3,且λ1\lambda_{1}λ1>λ2\lambda_{2}λ2>λ3\lambda_{3}λ3 设置阈值ϵ1\epsilon_{1}ϵ1、ϵ2\epsilon_{2}ϵ2, 通常情况下,ϵ1原创 2022-07-20 12:27:40 · 513 阅读 · 0 评论 -
关于多传感器融合方法的总结与思考
点云的各种表示 BEV 优势 能够完好地保留物体的尺度信息,不存在2D图像中物体尺度变化大的问题(近处的物体尺度较大,远处的物体尺度较小) 不存在2D图片表示下,物体相互遮挡的问题 large and sparse 劣势 不适用于检测小尺度物体(比如行人或者自行车等等) 不适用于检测空间中分布较为密集的物体 不适用于室内数据集的检测,因为在室内数据集中,可能存在物体相互遮挡的情况(比如椅子位于书桌下等等)(解决方式:文献[]) 小尺度物体的信息在网络下采样的过程中可能会发生丢失(解决方式:文献.原创 2022-07-20 12:25:50 · 1270 阅读 · 0 评论 -
基于多传感器融合的3D检测算法(二)
3D Proposal Based Sequential Model 这类方法是直接从输入数据中生成3D检测框。目前的方法大致可以分为一下两种: 基于多视图的融合方法 基于体素的融合方法 基于多视图的融合方法 该类方法的一个典型代表是MV3D。 基于体素的融合方法 ...原创 2021-03-14 17:28:56 · 1227 阅读 · 2 评论 -
基于多传感器融合的3D检测文献总结(一)
2D Proposal Based Sequential Models 该类检测方法主要分为两个阶段:一个是候选框生成阶段(RPN阶段),一个是候选框的精修阶段(RCNN阶段)。 在RPN阶段中,该类方法通常会借用已有的2D检测器在给定的图片上生成相应的候选框。然后再基于一阶段生成的候选框检索得到相应的种子区域,并通过对种子区域的特征提取完成后续阶段的refine. 通常情况下,将2D语义信息与3D几何信息结合的方式有2种: 一种是将2D检测框投影到3D空间,产生相应的frustum,并以frustum为种原创 2020-11-17 17:20:41 · 422 阅读 · 0 评论 -
Pillar-based Object Detection for Autonomous Driving
Motivation Recent methods like pointpillar or MVF highly rely on anchors to predict parameters of bounding boxes, but authors think that it is unessesarry and uneffctive to do in this way for two reasons: hyperparameters of anchors need to be fine-tuned原创 2020-09-29 20:45:01 · 403 阅读 · 0 评论