我们通常用GAN来做Gerneration。
对于一张图片x,其通常分布在高维空间中的一个流行上。在下图中,位于蓝色区域的点仅有很大的概率出现在我们的database中。

那么图像生成的主要任务是什么呢?
给定义原始数据的分布
,再给定一个以作为参数的概率模型
,该模型可以由generator学习得到。我们希望的,便是找到相应的参数
,使得原始数据集中的样本x在由G所定义的概率分布
中出现的概率尽可能大。
为了找到这样的参数,我们可以先从database中随机选出m个样本,并根据计算达到每个样本被生成的概率,再将这m个样本对应的概率乘起来,即可得到相应的似然函数。

进一步具体化似然函数,我们发现采用极大似然估计得到的参数,也恰好使得real image与generated image的KL散度达到最小。

我们的generator本质上是一个network,这个network定义了一个概率分布,我们希望的便是
与
尽可能的接近。问题在于该如何得到
呢?

我们暂且放下先前的问题不管.我们把目光转向discriminator.
尽管我们不知道和
的具体形式,但是我们可以对真实图片与生成图片进行采样。

对于一个给定的generator,我们希望优化的损失函数如下图,其形式非常类似与二分类问题中的交叉熵损失函数。

我们发现当真实图片与生成图片具有较小的divergence时,discriminator难以辨别真实图片和生成图片。但是当两者具有较大的diverg
博客主要介绍了GAN在图像生成中的应用。图像生成任务是找到参数使原始数据集样本在G定义的概率分布中出现概率最大,可通过极大似然估计得到参数,使真实与生成图像的KL散度最小。还提到了discriminator及优化的损失函数,类似二分类交叉熵损失函数。
253

被折叠的 条评论
为什么被折叠?



