变形迁移(Deformation Transfer)DT

本文探讨了非刚性配准在人脸表情迁移中的应用,通过结合特定比例的惩罚项来优化每个顶点坐标,实现表情迁移。作者在xyz坐标基础上增加了面法向量坐标,以提升配准效果。整个过程分为两步,首先是模型与表情基模型的配准,然后进行表情迁移。这种方法在实际应用中展现出潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       DT一般用于人脸表情基迁移,人体运动迁移等等。

直接上干货:上个比 开源代码效果还差的效果   

     

 从左边到右边就是表情迁移,一般完成这个工作分两步:

1. 将上面模型与表情基模型做非刚性配准

 上述三个惩罚项按照特定比例组合起来就可以完成非刚性配准的步骤:

其中的变量是每个顶点的坐标构成了列向量,然而为了更好的表达T,作者在xyz坐标之外,增加一个面法向量的坐标,所以最优化公式的变量个数与一般认为的不同,增加了N*3个。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值