论文笔记:Automatic Unpaired Shape Deformation Transfer

SIGGRAPH Asia 2018的论文介绍了一种利用VAE-Cycle GAN框架实现的全自动变形迁移方法,无需成对训练数据。该方法通过光场距离的视觉相似性度量确保形状保持不变,仅转移姿态。
摘要由CSDN通过智能技术生成

 

SIGGRAPH Asia 2018的文章,首次提出了一个全自动的变形迁移方法,且不需要成对的训练数据。

论文主页:http://geometrylearning.com/ausdt/

 

目标

首先明确几个概念,我这里提到的“形状”是指网格模型的identity信息,也就是这个模型是人还是猫,是什么体型之类的;“姿态”指动作信息,比如站立、举起右手。deformation要求只改变姿态而保留形状。

Deformation transfer(变形迁移),给定源模型的两个姿态S和S’,目标模型T,目标是抽取出从S到S’之间的潜在运动,并将这个运动信息迁移到T上,得到具有S的姿态和T的形状的模型T’。源模型和参考模型不必有相同的顶点数和拓扑,但一般要求初始姿态相同。下图是本文的一个例子,将瘦子S的变形迁移到胖子T上。

 

现有的问题

1、需要已知源和目标模型point-wise的对应关系,即已知所有顶点或部分关键点的对应

2、需要成对的数据,也就是需要源和目标有一一对应的姿态

 

本文的解决方案

1、提出VAE-Cycle GAN框架解决了上述两个问题,变分自编码器将网格模型编码到隐空间,cycle GAN用来建立两个

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值