优化算法3,4--Adagrad算法与RMSProp算法

本文介绍了Adagrad优化算法的基本思想,它通过调整学习率来避免参数更新的震荡。Adagrad的问题在于后期学习率过小导致收敛困难。为解决这个问题,RMSProp提出引入指数衰减平均,从而改善了学习率的动态调整,使得模型能够更好地收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adagrad
思想:如果一个参数的梯度一直都非常大,就让它的学习率变小一点,防止震动,反之,则让其学习率变大,使其能更快更新
做法:学习率由下列式子所得

+后的参数是为了防止分母等于0,一般取10的-10次方
对每个参数,初始化一个变量s=0,每次参数更新时,将梯度平方求和累加到s上
所以梯度越大,累加得s越大,学习率越小
缺点:到后期,分母越来越大,学习率会变得较小,无法较好的收敛

from torch.utils.data import DataLoader
from torch import nn
from torch.autograd import Variable
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.datasets import MNIST

def data_tf(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5
    x = x.reshape((-1,))
    x = torch.from_numpy(x)
    return x

train_set = MNIST('./data', train=True, transform=data_tf, download=True)
test_set = MNIST('./dat
自适应学习优化算法是一种优化机器学习模型参数的方法,根据不同的算法思想原理,可以选择不同的优化算法。本文将对LMS、AdagradRMSpropAdam这四种自适应学习优化算法进行比较研究。 LMS算法(Least Mean Squares)是一种基本的自适应学习算法,其基本思想是通过调整权重的方式来最小化模型预测输出真实输出之间的均方误差。LMS算法简单易实现,但计算效率较低,容易陷入局部最优Adagrad算法Adaptive Gradient)根据历史梯度累积信息来自适应地调整学习率。它会根据每个参数的梯度进行调整,使历史梯度较小的参数具有较大的学习率,以便更快地收敛。Adagrad适用于稀疏数据集,但在训练过程中会导致学习率不断减小,不利于模型收敛。 RMSprop算法(Root Mean Square Propagation)也是一种根据梯度历史信息自适应调整学习率的算法,但相比于Adagrad,它在学习率更新时引入了一个衰减系数,从而减缓学习率的下降速度。RMSprop相对于Adagrad更有效地决了学习率不断减小的问题,但可能会受到特定参数化的影响。 Adam算法Adaptive Moment Estimation)是结合了动量优化RMSprop算法的自适应学习算法。它综合考虑了一阶矩估计(动量)二阶矩估计(梯度平方的指数加权移动平均)的信息,从而更准确地估计了梯度的变化情况。Adam算法具有良好的性能,在大多数情况下表现优于上述三种算法。 综上所述,LMS、AdagradRMSpropAdam是四种常见的自适应学习优化算法。选择合适的算法应根据具体的应用场景数据特点来确定,以达到更好的训练效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值