优化算法2--动量法

起始点a到b点的梯度下降记为n1
b点到c点的实际梯度由两方面组成
v (t) =γv(t-1) +α∇b
+前面是n1的γ倍,通常取0.9(为什么<1?因为要减小早期的梯度影响)
+后面α是学习率,∇b是b点理论上的梯度下降

有很多点之后,v(t-1)指的是之前所有步骤累加的动量和

from torch.utils.data import DataLoader
from torch import nn
from torch.autograd import Variable
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.datasets import MNIST

def data_tf(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5
    x = x.reshape((-1,))
    x = torch.from_numpy(x)
    return x

train_set = MNIST('./data', train=True, transform=data_tf, download=True)
test_set = MNIST('./data', train=False, transform=data_tf, download=True)

criterion = nn.CrossEntropyLoss()
train_data = DataLoader(train_set, batch_size=64, shuffle=True)

net = nn.Sequential(
    nn.Linear(784, 200),
    nn.ReLU(),
    nn.Linear(200, 10)
)

optimizer = torch.optim.SGD(net.parameters(),lr=1e-2,momentum=0.9)

losses = []
start = time.time()
idx = 0
for e in range(5):
    train_loss = 0
    for im, label in train_data:
        im = Variable(im)
        label = Variable(label)
        out = net(im)
        loss = criterion(out, label)
        net.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.data
        if idx % 30 == 0:
            losses.append(loss.data)
        idx += 1

    print('epoch: {}, Train Loss: {:.6f}'.format(e, train_loss / len(train_data)))
end = time.time()
print('时间: {:.5f} s'.format(end - start))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值