今天给大家分享一下前缀和以及差分(写得快的话差分今天也会更新)。
首先,我们来看一下前缀和,前缀和包括一维前缀和以及二维前缀和。
一维前缀和就是给定一个序列,要求求前i个数的和,如下图:
那么,知道什么是前缀和后,我们又应该如何求前缀和Si呢?其实,很简单,我们可以采用for循环,并套用公式Si=Si-1+ai求解
具体代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int a[N],s[N];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);//从1开始,方便计算
}
s[0]=0;
for(int i=1;i<=n;i++){
s[i]=s[i-1]+a[i];//计算前缀和
}
while(m--){
int x;
scanf("%d",&x);
printf("%d",s[x]);//输出前x个数的前缀和
}
return 0;
}
一维前缀和除了可以求前i个数的和以外,还可以求一个区间的和,比如要求区间[1,5]的和,我们可以直接拿S5-S0求得,也就是用公式S[l,r]=S[r]-S[l-1]。
具体代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int a[N],s[N];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);//从1开始,方便计算
}
s[0]=0;
for(int i=1;i<=n;i++){
s[i]=s[i-1]+a[i];//计算前缀和
}
while(m--){
int l,r;
scanf("%d%d",&l,&r);
printf("%d",s[r]-s[l-1]);//计算区间[l,r],公式S[l,r]=s[r]-s[l-1],例:s[1,3]=s[3]-s[0]
}
return 0;
}
讲完一维前缀和,我们再来看看二维前缀和,二维前缀和就是给定一个矩阵,求它左上角的和,也就是下图的阴影部分。
那么,我们应该如何求二维前缀和呢?
这里,我们可以先画一个表格(刚开始,想把S[i-1][j]那些也在表格中画出来的,但是自己画的有点乱,也没有带其他颜色的笔,就没有画了,大家可以根据公式,自己画一下,理解一下)如下图 :公式(S[i][j]=S[i-1][j]+S[i][j-1]-S[i-1][j-1]+a[i][j])
二维前缀和也可以用来求上图中任何一个方块的和,这里大家可以看一下下面这个例题(求子矩阵的和),这个题主要用到公式S[x2][y2] - S[x1-1][y2] - S[x2][y1-1] + S[x1-1][y1-1](这里大家也可以自己画图理解一下。
例题:
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出:
17
27
21
具体代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N=1001;
int a[N][N],Sum[N][N];
int main() {
int n,m,q,x1,y1,x2,y2;
memset(a, 0, sizeof(a));//初始化
cin>>n>>m>>q;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin>>a[i][j];//输入
Sum[i][j] = a[i][j]+ Sum[i-1][j] + Sum[i][j-1] - Sum[i-1][j-1];//套公式计算前缀和
}
}
for (int i = 0; i < q; i++) {
cin>>x1>>y1>>x2>>y2;
cout<<Sum[x2][y2] - Sum[x1-1][y2] - Sum[x2][y1-1] + Sum[x1-1][y1-1]<<endl;//输出
}
}