前缀和(包括代码)

今天给大家分享一下前缀和以及差分(写得快的话差分今天也会更新)。

首先,我们来看一下前缀和,前缀和包括一维前缀和以及二维前缀和。

一维前缀和就是给定一个序列,要求求前i个数的和,如下图:

那么,知道什么是前缀和后,我们又应该如何求前缀和Si呢?其实,很简单,我们可以采用for循环,并套用公式Si=Si-1+ai求解

具体代码如下:

#include<bits/stdc++.h>
using namespace std; 
const int N=100010;
int a[N],s[N];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
	scanf("%d",&a[i]);//从1开始,方便计算 
}
s[0]=0;
for(int i=1;i<=n;i++){
	s[i]=s[i-1]+a[i];//计算前缀和 
}
while(m--){
	int x;
	scanf("%d",&x);
	printf("%d",s[x]);//输出前x个数的前缀和 
}
	return 0;
} 

一维前缀和除了可以求前i个数的和以外,还可以求一个区间的和,比如要求区间[1,5]的和,我们可以直接拿S5-S0求得,也就是用公式S[l,r]=S[r]-S[l-1]

具体代码如下:

#include<bits/stdc++.h>
using namespace std; 
const int N=100010;
int a[N],s[N];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
	scanf("%d",&a[i]);//从1开始,方便计算 
}
s[0]=0;
for(int i=1;i<=n;i++){
	s[i]=s[i-1]+a[i];//计算前缀和 
}
while(m--){
	int l,r;
	scanf("%d%d",&l,&r);
	printf("%d",s[r]-s[l-1]);//计算区间[l,r],公式S[l,r]=s[r]-s[l-1],例:s[1,3]=s[3]-s[0] 
}
	return 0;
} 

讲完一维前缀和,我们再来看看二维前缀和,二维前缀和就是给定一个矩阵,求它左上角的和,也就是下图的阴影部分。

那么,我们应该如何求二维前缀和呢?

这里,我们可以先画一个表格(刚开始,想把S[i-1][j]那些也在表格中画出来的,但是自己画的有点乱,也没有带其他颜色的笔,就没有画了,大家可以根据公式,自己画一下,理解一下)如下图 :公式(S[i][j]=S[i-1][j]+S[i][j-1]-S[i-1][j-1]+a[i][j])

二维前缀和也可以用来求上图中任何一个方块的和,这里大家可以看一下下面这个例题(求子矩阵的和),这个题主要用到公式S[x2][y2] - S[x1-1][y2] - S[x2][y1-1] + S[x1-1][y1-1](这里大家也可以自己画图理解一下。

例题:

输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。

输入:

3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4

输出:

17
27
21

具体代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N=1001; 
int a[N][N],Sum[N][N];

int main() {
	int n,m,q,x1,y1,x2,y2;
    memset(a, 0, sizeof(a));//初始化 
    cin>>n>>m>>q;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            cin>>a[i][j];//输入 
            Sum[i][j] = a[i][j]+ Sum[i-1][j] + Sum[i][j-1] - Sum[i-1][j-1];//套公式计算前缀和 
        }
    }
    for (int i = 0; i < q; i++) {
        cin>>x1>>y1>>x2>>y2;
        cout<<Sum[x2][y2] - Sum[x1-1][y2] - Sum[x2][y1-1] + Sum[x1-1][y1-1]<<endl;//输出 
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值