链接:UVA - 11212
题意:给出一个数字为1~n的某种排列,只能用剪切和粘贴操作,求将其变得有序的最小操作次数。
题解:用IDA*,枚举上界进行搜索,并找出剪枝所用的乐观函数h。此题的乐观函数为,g( ) <= (maxd - d) * 3。g( )为此时顺序还不正确的个数,d为现在搜索的层数,maxd为总搜索层数。原理为一次操作最多改变3个无序数字。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10;
int n, a[maxn];
bool judge()
{
for(int i = 0; i < n - 1; i++){
if(a[i] >= a[i+1]) return false;
}
return true;
}
int h()
{
int cnt = 0;
for(int i = 1; i < n; i++){
if(a[i] != a[i - 1] + 1) cnt++;
}
return cnt;
}
bool DFS(int d, int maxd)
{
if(d * 3 + h() > maxd * 3) return false;
if(judge()) return true;
int o[maxn], b[maxn];
memcpy(o, a, sizeof(a));
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
int cnt = 0;
for(int k = 0; k < n; k++) if(k < i || k > j) b[cnt++] = o[k];
for(int k = 0; k <= cnt; k++){
int cnt2 = 0;
for(int p = 0; p < k; p++) a[cnt2++] = b[p];
for(int p = i; p <= j; p++) a[cnt2++] = o[p];
for(int p = k; p < cnt; p++) a[cnt2++] = b[p];
if(DFS(d + 1, maxd)) return true;
memcpy(a, o, sizeof(a));
}
}
}
return false;
}
int slove()
{
if(judge())return 0;
int max_ans = 5;
for(int maxd = 1; maxd < max_ans; maxd++){
if(DFS(0, maxd)) return maxd;
}
return max_ans;
}
int main()
{
int cas = 1;
while(scanf("%d", &n), n){
for(int i = 0; i < n; i++) scanf("%d", &a[i]);
printf("Case %d: %d\n", cas++, slove());
}
return 0;
}