数据结构之线段树剖析

数据结构之线段树剖析

为什么要使用线段树

对于有一类问题,我们关心的是线段(或者区间):

最经典的线段树问题:区间染色:

  • 描述:
    • 有一面墙,长度为n,每次选择一段墙进行染色,
    • m次操作后,我们可以看见多少种颜色?
    • m次操作后,我们可以在[i,j]区间内看见多少种颜色?
  • 操作:
    • 染色操作(更新区间)
    • 查询操作(查询区间)

另一类经典问题:区间查询:

  • 描述:
    • 数据存放在一个给定长度为 n 的数组中,需要对一个区间所有的数组进行统计查询,
    • 如:查询一个区间[i,j]的最大值、最小值、或者区间数字和等。
  • 实质:基于区间的统计查询,区间中的数据是会动态更新的,日常中常见的场景:
    • 2017年注册用户中消费最高的用户?消费最少的用户?学习时间最长的用户?
    • 某个太空区间中天体问题?

如果我们使用数组来解决该问题,时间复杂度为:

  • 查询区间: O(n)
  • 更新区间: O(n)

实际需求中,我们需要性能更好的实现;

使用线段树实现,时间复杂度为:

  • 查询区间: O(logn)
  • 更新区间: O(logn)

线段树解决的问题:

  • 对于给定区间:
    • 更新:更新区间中一个元素或者一个区间的值
    • 查询:查询一个区间[i,j]的最大值、最小值、或者区数字和等
  • 给定的区间的长度一般是固定的;
  • 对于一个线段树,每一个节点存储的是一个区间中相应的统计值

统计区间中数据的和为例:

  • 构建线段树,线段树每个节点存放该节点区间数值的和(同理也可以是最大值或最小值等)

1.线段树

  • 查询区间[4,7]的和,只需要在线段树中查询到A[4,7]的节点即可获得结果
  • 查询区间[2,5]的和,只需要在线段树中查询到A[2,3] 和 A[4,5]两个节点,再对两个节点的值求和即可获得结果

2.线段树区间求和示例

概述

线段树(Segment Tree) 是一种二叉树形数据结构,1977 年由 Jon Louis Bentley 发明,用以存储区间或线段,并且允许快速查询结构内包含某一点的所有区间。

一个包含 n 个区间的线段树,空间复杂度为 O(n),查询的时间复杂度则为O(logn + k),其中 k 是符合条件的区间数量。

线段树是一个平衡的二叉树,所有叶子到根的距离最多只相差1。令整个区间的长度为N,则其有N个叶节点,每个叶节点代表一个单位区间,每个内部结点代表的区间为其两个儿子代表区间的联集。

线段树不是完全二叉树;线段树是平衡二叉树;堆也是平衡二叉树。

原理

创建线段树:

  • 根节点代表整个区间,再从根节点开始进行平分,直到节点的区间长度为1结束;

3.线段树

线段树存储结构:

  • 方式一:参照二叉搜索树,使用动态的二叉树存储结构
  • 方式二:使用固定数组存放:
    • 将线段树看做满二叉树,用数组来存放;
    • 但线段树并不一定是满二叉树,因此有一个问题就是:如果有n个元素的区间,使用数组存放需要多少节点?

满二叉树的特性:

  • 对 h 层的满二叉树,共有节点数 2^h - 1 个节点
  • 从 0 层 到 倒数第二层 的所有节点数,相当于为 高度为 (h-1) 的满二叉树,其共有节点数 2^(h-1) - 1 个节点;
  • 最后一层即 (h-1) 层,节点数 2^(h-1) 个节点
  • 得出最后一层的节点数大致等于前面所有层节点数之和

如果有n个元素的线段树,使用数组存储所需的空间:

  • 若 n = 2^k ,例 n=8 ,即其最后一层节点数为n,得出使用数组存放元素为 n 的线段树所需的空间为 2 * n;
  • 若 n = 2^k + 1 ,为最坏情况,例 n=9 ,所有叶子节点并未在同一层,而是需要再新增一层存放,因为新增的一层的节点数大致等于前面所有层节点数之和,即需要 (2 * n) * 2 = 4 * n 的数组空间来存放所有元素。
  • 总体评估:如果元素有n个,使用4*n大小的数组存储线段树;

创建线段树实现:

  • 父节点存储的信息是其左、右两个孩子信息的综合,需要以具体业务场景来决定,以求和为例:
  • 通过建立线段树来查询区间中元素的和,相应的线段树每个节点存储的是区间中所有元素的和;
  • 要创建线段树的根,先要创建根的左、右孩子,根节点存储的值是左、右孩子存储值的求和;
  • 而要创建根节点的左、右孩子,又需要创建以根的左、右孩子为父节点的左、右孩子,以此类推,递归直到左、右孩子节点所存储的区间不能再划分为止,即区间长度为1;

线段树的查询:

  • 区间[l…r]的线段树,其左、右孩子是对其区间的对半切分的,int mid = l + (r - l) / 2; 其左孩子的区间为[l,mid]、右孩子的区间为[mid+1,r]
  • 若要查询区间[queryL…queryR]的值,
    • 从根节点开始遍历线段树,找到匹配的区间值进行求和,
    • 如从根节点的左、右孩子开始找区间[queryL,mid]、[mid+1, queryR],
    • 以此类推,递归直接找到区间相匹配的节点并返回节点值;
  • 例:在以treeIndex为根的线段树中,在其区间为[l…r]的范围里,搜索区间[queryL…queryR]的值,如果:
    • 查询区间正好匹配,直接返回 ;
      • ( if(l == queryL && r == queryR) return tree[treeIndex]; )
    • 查询区间只在右子树,只往右子树查询;
      • if(queryL >= mid + 1) return query(rightTreeIndex, mid + 1, r, queryL, queryR);
    • 查询区间只在左子树,只往左子树查询;
      • else if(queryR <= mid) return query(leftTreeIndex, l, mid, queryL, queryR);
    • 查询区间部分在左子树、部分在右子树,分别往左、右子树查询,并求和
      • else{
      • E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
      • E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
      • return merger.merge(leftResult, rightResult);
      • }

线段树

线段树更新一个位置:

  • 例:将index位置的值,更新为e
  • 从根节点开始,计算存放index所在的子树,并依此类推,递归直到叶子节点为止,并更新该叶子节点的值,并返回新的值,递归更新其父节点的值;
  • 例:在以treeIndex为根的线段树中更新index的值为e
    • 递归到叶节点,更新叶子节点的值;
      • if(l == r){ tree[treeIndex] = e; return; }
    • index所在节点在右子树,更新右子树;
      • if(index >= mid + 1) set(rightTreeIndex, mid + 1, r, index, e);
    • index所在节点在左子树,更新左子树;
      • else if( index <= mid ) set(leftTreeIndex, l, mid, index, e);
    • 更新完孩子节点,返回值后更新父节点的值;
      • tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);

线段树更新一个区间:

  • 对于一个区间进行更新,例将[2,5]区间中所有元素+3
  • 采用区间查询相同的逻辑找到要更新的区间,再更新区间中所有叶子节点的值,同时更新区间的值,再返回,递归更新父节点的值;
    • 采用该方式对叶子节点的更新所需的时间复杂度为O(n)级别点
  • 懒惰更新:为提高性能,采用lazy数组记录未更新的内容,到下次查询区间时,查询到具体叶子节点时,先检查lazy数组中是否存在未更新的叶子节点,如果存在,同新更新叶子节点;

其它线段树相关问题:

  • 二维线段树
  • 动态线段树
  • 树状数组

时间复杂度分析

使用线段树:

  • 更新操作,时间复杂度 O(logn)
  • 查询操作,时间复杂度 O(logn)

实现

  1. 使用数组实现线段树
  2. 使用二叉树实现线段树
  3. 线段树区间修改使用Lazy优化
  4. Leetcode 303. Range Sum Query - Immutable
  5. Leetcode 307. Range Sum Query - Mutable

使用数组实现线段树

SegmentTree

  • public SegmentTree(E[] arr, Merger merger) 构建线段树
    • private void buildSegmentTree(int treeIndex, int l, int r) 在treeIndex的位置创建表示区间[l…r]的线段树
  • public int getSize() 获取线段树元素数量
  • public E get(int index) 获取线段树某一位置的元素
  • public E query(int queryL, int queryR) 返回区间[queryL, queryR]的值
    • 在以treeIndex为根的线段树中[l…r]的范围里,搜索区间[queryL…queryR]的值
    • private int leftChild(int index) 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
    • private int rightChild(int index) 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
  • public void set(int index, E e) 将index位置的值,更新为e
    • private void set(int treeIndex, int l, int r, int index, E e) 在以treeIndex为根的线段树中更新index的值为e

参考代码: com.chen.data.struct.segment.SegmentTree1

使用二叉树实现线段树

参考代码: com.chen.data.struct.segment.SegmentTree2

线段树区间修改使用Lazy优化

参考代码: com.chen.data.struct.segment.SegmentTree3

Leetcode 303. Range Sum Query - Immutable 区域和检索 - 数组不可变

https://leetcode-cn.com/problems/range-sum-query-immutable/

给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。

实现 NumArray 类:

  • NumArray(int[] nums) 使用数组 nums 初始化对象
  • int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], … , nums[j]))

参考代码: com.chen.data.struct.segment.Leetcode303NumArray

Leetcode 307. Range Sum Query - Mutable

https://leetcode-cn.com/problems/range-sum-query-mutable/

给你一个数组 nums ,请你完成两类查询,其中一类查询要求更新数组下标对应的值,另一类查询要求返回数组中某个范围内元素的总和。

实现 NumArray 类:

  • NumArray(int[] nums) 用整数数组 nums 初始化对象
  • void update(int index, int val) 将 nums[index] 的值更新为 val
  • int sumRange(int left, int right) 返回子数组 nums[left, right] 的总和(即,nums[left] + nums[left + 1], …, nums[right])

参考代码: com.chen.data.struct.segment.Leetcode307NumArray

相关链接

gitee地址:https://gitee.com/chentian114/chen_datastruct_study

github地址:https://github.com/chentian114/chen_datastruct_study

CSDN地址:https://blog.csdn.net/chentian114/category_9997109.html

公众号

知行chen

参考

Wiki 百科 : 线段树 & 线段树 (区间查询)

刘宇波《玩转数据结构》课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值