TDOA算法综述--(3)--Fang‘s Method

目录

1. 概要

2. 基本方程

3. 求解


1. 概要

        本文介绍名为Fang's Method的TDOA求解算法。

        关于背景介绍参见TDOA算法综述(An overview of TDOA algorithm)--(1)

2. 基本方程

        在前文我们得到了如下所示的TDOA定位的双曲线方程组:

3. 求解

        首先,将Anchor1置于坐标原点,且Anchor2置于x坐标轴上,即。这样可以得到以下简化的关系式:

        则式(2)表示的双曲线方程组可以改写为:

        消除式(9)中的 ,就可以得到关于x和y的二元一次方程如下: 

        将式(9)的第一式两边取平方,并代入,然后再将式(10)代入,经过整理后可以得到关于x的一元二次方程如下: 

        求解式(11)可以得到x的两个解,基于比如说先验知识选取其中一个合理的值作为真正的解,代入式(10)可以求得y

        与Chan’s Method中一样,[Jacek Stefanski]声称只需要式10的以下解(有待进一步确认): 

        需要注意的是,由于Fang’s Method一开始做了坐标变换(将Anc1置于新的坐标系的坐标原点),此处所求得(x,y)是在新的坐标系中的坐标,执行反向的坐标变换(仅仅是坐标平移而已)后就可以得到在原坐标系中的坐标。

        由以上求解过程可以看出,Fang’s MethodChan’s Method其实基本相同的套路,可以看作是等价的算法。都是通过数式变换技巧将原双曲非线性方程组变换为某个变量(Chan’s Method中是R1Fang’s Methodx)的一元二次方程组然后进行求解。两者都存在同样的解的模糊性(根据[Jacek Stefanski],两者的模糊性从根本上是相同性质的,这个结论当然丝毫不让人觉得意外)。解的模糊性可以通过增加一个Anchor来解消,当然如果如[Jacek Stefanski]所说可以直接分辨,或者基于某些先验信息进行分辨,那当然更好。

        Fang’s Method与Chan’s Method在计算复杂度以及数值敏感性方面是否有差异需要后续进行仿真来进行验证。

        本综述系列其它文章参见:

        TDOA算法综述(An overview of TDOA algorithm)--(1)

        TDOA算法综述--(2)--Chan‘s Method

DOA-TDOA算法是一种**结合到达时间差(TDOA)和到达角度(DOA)的无源定位方法,用于在无线通信系统中确定目标的位置**。 以下是对DOA-TDOA算法的具体介绍: 1. **TDOA定位原理**:基于信号到达不同基站的时间差来确定待定位对象的位置。由于电磁波的传播速度是已知且恒定的,通过测量信号到达各参考基站的时间差,可以计算出对应的距离差,从而通过求解非线性双曲方程组来推断出待定位对象相对于各参考基站的相对位置。 2. **DOA定位原理**:通过分析目标在不同接收站接收到信号的到达角度(即信号传播方向与接收站之间的夹角),可以为定位提供额外的信息。当结合了到达时间和到达角度两种数据时,可以提高定位的准确性和可靠性。 3. **联合定位过程**:在实际应用中,通常需要至少三个或更多的基站参与定位,以解决定位的模糊性并提高精度。通过将时间差和角度信息相结合,DOA-TDOA算法能够更精确地估计目标的位置。 4. **算法应用**:该算法广泛应用于移动通信、雷达探测、声纳定位等领域,尤其适用于无法直接测量目标位置的场景。 此外,在实施过程中,需要考虑多种因素,如多径效应、非视距传播、时钟偏差等,这些因素都可能影响定位的准确性。因此,算法设计时需要对这些因素进行适当的建模和补偿。 综上所述,DOA-TDOA无源定位算法通过结合到达时间差和到达角度信息,为无线通信系统中的目标定位提供了一种有效的解决方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值