目录
1. 问题描述
2. 解题分析
除了最“笨”的暴力搜索以外,没有找到什么头绪。
这个问题涉及到几个维度的搜索:
- 用哪个数字
- 用几个
- 如何构成表达式
这种多个维度的搜索问题,维度的搜索顺序很重要。错误的维度搜索顺序可能会导致额外的时间甚至导致陷入死循环。比如说,本题如果以选择哪个数字为第一搜索维度的话,有些数字可能会不管用多少个都无法构成符合条件的表达式,因此就会陷入无限循环。
本题的最关键的一点是要用最少个数的数字。因此应该以个数为第一搜索维度。
算法流程如下:
有几个细节需要注意:
- 关于除法是采用整数除法,在python中有“//”表示整数除法,可以方便使用
- 允许多位数的存在。包括多位数的遍历有不同的方法,本题中采用的方式,假设另有一个空的运算符‘’,如果两个数字之间插入一个空运算符‘’就表示构成了两位数。构造多位数的话则一次类推。这样做的好处是空操作符‘’和其他4个有效运算符可以统一对待,因此由k个n构成的表达式时就相当于在k个n的(k-1)个位置上任意插入不同的运算符,处理起来非常方便。这一构造方法最先用于Q2的解答,请参考。
构造好表达式后,如何评估表达式的值。可以自写代码实现但是比较麻烦。Python中有eval()实现了这一功能,本题的焦点不在于表达式的值如何评估,所以在本题解中就偷懒使用eval()了。对于如何自写代码评估感兴趣的话,可以参考Q2的题解:Q02: 四则运算组合游戏https://blog.csdn.net/chenxy_bwave/article/details/119821393
3. 代码及测试
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 26 08:08:54 2021
@author: chenxy
"""
import sys
import time
import datetime
import math
# import random
from typing import List
# from queue import Queue
from collections import deque
import itertools as it
import numpy as np
def expr_gen_eval(n,k,target):
op = ['+', '-', '*', '//','']
for ops in it.product(op,repeat = k-1):
# print(ops)
exprlist = (2*k-1) * [str(n)]
for i in range(k-1):
exprlist[2*i+1] = ops[i]
exprstr = ''.join(exprlist)
# print(exprstr)
rslt = eval(exprstr)
if rslt == target:
return True,exprstr
return False,''
target = 1234
k = 1
isFound= False
tStart = time.perf_counter()
while 1:
print('k = {0}'.format(k))
for n in range(1,10):
# Forming math expression with k n's and {+,-,*,/,''}
isFound,exprstr = expr_gen_eval(n, k, target)
if isFound == True:
break
if isFound == True:
break
k = k + 1
tCost = time.perf_counter() - tStart
print('(n,k)=({0},{1}, exprstr={2}, tCost = {3:6.3f}(sec))'.format(n,k,exprstr,tCost))
运行结果:(n,k)=(9,7, exprstr=99999//9//9, tCost = 1.303(sec))
4. 后记
只想到了暴力搜索的方法,好在运行时间似乎还在可以接受的范围。至于是否还有更好的解法,在“偷看”答案之前,(反正已经有了一个解)还是让“思考”再飞一会儿^-^.
上一篇:Q40: 优雅的IP地址
下一篇:Q42: 将牌洗为逆序
本系列总目录参见:程序员的算法趣题:详细分析和Python全解