傅里叶变换

  傅里叶变换是应用最广泛的数学公式之一,是世界上最伟大的公式。具体应用我就不赘述了,学工科的各位既然来看我的博客,想必都见识过。写这篇博客不仅是我自己对傅里叶变换的一个总结,同时也希望大家看了能够轻松地去学习和研究它。如果内容出现了错误,还望大家批评指正,小弟在此先谢了。

一、欧拉公式

  欧拉公式是数学基本公式,它将三角函数和指数函数用一种令人难以置信的方式联系了起来。要说明傅里叶变换,就必须提到欧拉公式。
  学过高中数学的都知道,一个实数可以用一维坐标轴上的一个点来唯一确定,那么一个复数在平面直角坐标轴中怎么唯一确定呢?任意一个复数z可以表示为 z=a+bj ,其中的a和b都是实数,我们可以分别用横轴和纵轴上的一个点来唯一确定,因此一个复数对应到平面上的一个点。
         这里写图片描述
  我们令上图中的 θ=x r=1 ,通过简单的三角函数知识就可以得到 z=cosx+jsinx 。此时对等号两边分别求导得:
    dzdx=sinx+jcosx=j2sinx+jcosx=j(cosx+jsinx)=jz
  分离变量:
               1zdz=jdx     
  对两边分别积分:
   lnz=jx+C  
  为了确定C的值,令 x=0 得到 C=0 ,代入上面的式子得到:
   ejx=z=cosx+jsinx
  以上就是欧拉公式的证明过程。从这个公式可以得到以下几条信息:
  1. ejx 的实部和虚部都是三角函数,从某种意义上来看,它就是一个周期性三角函数,周期和它的实部以及虚部是一致的。
  2. ejx 的模长为1,因为 (sinx)2+(cosx)2=1
  3. ejx 是一个正交函数,这一点很重要,我会在下面说明。
    

二、傅里叶级数

  傅里叶级数是傅里叶变换的基础,所以我们从它入手,最后将它推广为傅里叶变换。

  1. 正交基观点
      任何一个n维向量都可以由一组n维正交基的线性组合确定,这样做有一个好处就是在实际解决问题的时候,我们只要关注这些基底的系数,而不用关心这些基底。举个简单的例子,在平面直角坐标系中,所有的向量都由横轴和纵轴上的单位向量线性组合得到,所以在我们的学习过程中,从来没有用到这两个基底,而是用到它们的系数x和y,从而大大简化了使用的细节和步骤。
      从另一个角度来看,对不同的基底,同一个向量的表示都是不同的,但是实际上它们是同一个向量,这是不是有了一丝哲学的意味。如果要扯哲学的话,正交基甚至可以看做一对矛盾,哈哈。我们平常在生活中看待一件事,着眼的角度不同,看法也会不同,映射到正交基上,正交基就可以看做是所谓的“角度”或者“空间”,每一组不同的正交基都唯一决定了一个“空间”,在这个空间里,正交基就是唯一的“法则”。所以,我们可以认为在我们所处的世界之外还有无数个世界,这些世界里也存在一个“你”,但是这个“你”不再服从你熟悉的规则,而是服从那个世界的规则,是不是越看越玄乎了?其实这不是我乱说的,科学界称这些“世界”为“域”,以时间为规则的域叫做时域,以空间为规则的域称为空间域,以频率为规则的域就是傅里叶变换提到的频域。我们在时域中,经历着生老病死,数着时间过日子,但是在频域里,我们的存在早已被注定,你细致苛刻规划的未来,根本就是一个必定的终点,所以在频域内,时间失去了作为度量的意义,取而代之的是频率。那样一个永恒不变的世界,你觉得纯粹是想象,但是你怎么知道在频域里的“你”看来,时域不是一个想象的世界呢?傅里叶经过深入的研究,归纳了频域这个世界的法则,从而揭示了频域的神秘面纱。这个法则就是复指数正交函数。
      正交函数和正交基的思想是一致的,也就是说,一组正交函数的线性组合可以唯一确定一个函数。严谨的证明是由最小化均方误差出发,我这里就不搞得那么复杂,给大家提供一个比较好理解的证明思路。
      正交向量大家都清楚,两个向量的内积为零,它们就是正交的。例如两个n维的向量( a1,a2,a3,...,an )和( b1,b2,b3,...,bn )正交,那么 a1b1+a2b2+a3b3+...+anbn=0 。现在我们要明白这个n到底代表什么?平常说的n维是什么意思?如果一个向量只有一维,那么它只有一个元素,只能表示实轴上的一个点,这个点所处的空间是一维的;如果向量是二维的,那么它有两个元素,可以表示平面上的一个点,这个点所处的空间是二维的。所以n维就代表了向量的元素个数,也代表了向量所处的空间维度。
      那么一个函数的维度该怎么确定呢?向量是元素的有序集合,所以向量的维度以元素的个数决定,类比一下,函数的元素是什么?显然是点而不是数,所以点的个数决定了函数的维度。问:一个连续的函数有多少个点?答:无穷多个。所以连续函数的维度是无穷的。
      既然函数维度是无穷的,那么意味着我们在进行内积的时候的求和项是无穷的,求和就变成了积分。但是仅仅这样定义对实函数是成立了,但是要拓展到复函数还是不行,要对其中一个函数做共轭来消除 j 的影响。
      因为目前的信号只研究时域和频域,时域的法则大家都明白,以时间为刻度,所以我们就给出其他域(重点是频域)的正交函数定义:
      如果集合{ψ0,ψ1,ψ2,...,ψN}中各个函数满足:
       t2t1ψn(t)ψm(t)dt={0knmn=m.
      则{ ψn(t) }为正交函数集。
      频域的正交函数集就是复指数正交函数集{ ejnw0t }。为什么说它是正交的呢?我们用定义来证明一下。
      根据欧拉公式 ejnw0t=cos(nw0t)+jsin(nw0t) ,显然 ejnw0t 是一个周期函数,周期为 2πnw0 ,当 n=1 时,取最大周期 2πw0 。既然是一个周期函数,我们只要关注该函数一个周期的行为即可,所以积分的上下限之差可为一个周期。对不同的n有不同的周期,所以我们干脆取函数集的最大周期 2πw0 为周期 T0
       t1+T0t1ejnw0tejmw0tdt = t1+T0t1ej(nm)w0tdt
      当 n=m 时, ej(nm)w0t=1 ,所以积分为 T0 ;
      当 nm 时,
    t1+T0t1ej(nm)w0tdt=1j(nm)w0[ej(nm)w0(t1+T0)ej(nm)w0t1]=ej(nm)w0t1j(nm)w0[ej(nm)w0T01]=ej(nm)w0t1j(nm)w0[ej(nm)2π1]=0
      可见,复指数函数集是正交函数集,且正交的基点或者度量是 nw0 ,也就是一系列频率或者周期(谐波),因此,这个由复指数函数集确定的域就被称为频域。
      既然我们已经找到了频域的一组基函数,那么根据基函数的定义,对一个连续的函数,我们可以用这组基来得到它的频域表示,这个“表达方式”就是我们耳熟能详的“傅里叶级数”了。但是要注意,复指数函数集的所有函数都是周期函数,所以我们用它作为基来表示的也是一个周期函数。
      由此得到一个周期信号的傅里叶级数表示:
       x(t)=+k=akejkw0t
      问题在于 ak 作为这些复指数基底的权,要怎么确定?我们知道,一个向量要得到某个基的权,只要将这个向量和这个基做内积就可以了,同样的,要得到 ak 的值,我们同样可以和 ak 对应的基 ejkw0t 做内积。下面的论证过程看起来很繁琐,但是其实不复杂。
      内积要消除时间 t 的影响,所以要对时间域做积分。
      ak=+x(t)ejkw0tdt=+(+k=akejkw0t)ejkw0tdt
      交换积分和求和顺序得:
       +k=ak(+ejkw0tejkw0tdt)=+k=ak(+ej(k+k)w0tdt)
      单独看括号内的一项: +ej(k+k)w0tdt ,由欧拉公式我们知道复指数函数是周期函数。如果 kk 那么 ej(k+k)w0t 就是一个周期函数(正弦),我们知道正弦函数一个周期的时域积分为0,因此将时间拓展到无穷,依然积分为0;如果 k=k ,那么 ej(k+k)w0t=1 ,无穷积分就是无限大。所以得到下面这个结论:
       +ej(k+k)w0tdt={0kkk=k.
      如果看官知道单位冲激函数的话,上面的公式也可以表示成:
       +ej(k+k)w0tdt=δ(k+k)
      再把这个结论代回原来的公式中:
       +x(t)ejkw0tdt=+k=ak(+ej(k+k)w0tdt)=+k=[akδ(k+k)]=ak
      得到 ak 的最终形式:
       ak=1+x(t)ejkw0tdt
      因为无穷符号不好看,我们通常取 x(t) 的一个周期进行积分得到 ak :
       ak=1TTx(t)ejkw0tdt
      这样,我们就从正交基的观点解释了傅里叶级数的整个推导过程。应该还是蛮浅显易懂的吧哈哈哈,其实看官如果只是想理解傅里叶变换的话,就没有必要看我上面打的那些公式,直接看文字解释就好。

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值