数组实现堆,堆实现优先队列
优先队列:就跟有优先级的队列,那个重要先执行那个
二叉堆(Binary Heap) :跟二叉树一样
满二叉树:所有的叶子节点都是满的
完全二叉树:叶子节点不一定满
最大堆:堆中某个节点的值不小于其父节点的值。
最小堆:堆中某个节点的值不大于其父节点的值。
添加元素上浮过程
数据的下沉取出元素
不想搞了。。。。。。。。。。。。。。
还是有问题。。
public class Array<E> {
private E[] data;//数组
private int size;//数组中元素个数
//固定容量的动态数组
public Array() {
this(10);
}
//自定义数组大小
public Array(int capacity) {
data=(E[])new Object[capacity];
size=0;
}
//获取数组容量
public int getCapacity() {
return data.length;
}
//获取数组中元素的个数
public int getSize() {
return size;
}
//确认数组是否为空
public boolean isEmpty() {
return size==0;
}
//向所有元素的后面添加一个元素
public void addLast(E e) {
// //如果数组满了就抛异常
// if(size==data.length) {
// throw new IllegalArgumentException("Add failed. Array is full");
// }
// data[size]=e;
// size++;
add(size,e);
}
//向所有元素的前面添加一个元素e
public void addFirst(E e) {
add(0,e);
}
//向数组中的任意位置index添加一个元素e
public void add(int index,E e) {
//如果数组满了就抛异常
if(size==data.length) {
resize(2*data.length);
}
if(index<0||index>size) {
throw new IllegalArgumentException("Add failed. Require index<0||index>size");
}
for(int i=size-1;i>=index;i--) {
data[i+1]=data[i];
}
data[index]=e;
size++;
}
private void resize(int capacity) {
E[] newData=(E[])new Object[capacity];
for(int i=0;i<size;i++) {
newData[i]=data[i];
}
data=newData;
}
//获取索引位置的元素
public E get(int index) {
if(index<0||index>=size) {
throw new IllegalArgumentException("Get failed. index is illegal");
}
return data[index];
}
public E getLast() {
return get(size-1);
}
public E getFirst() {
return get(0);
}
//修改索引index位置的元素e
public void set(int index,E e) {
if(index<0||index>size) {
throw new IllegalArgumentException("Get failed. index is illegal");
}
data[index]=e;
}
//查找数组中是否有元素e
public boolean contains(E e) {
for(int i=0;i<data.length;i++) {
if(data[i].equals(e)) {
return true;
}
}
return false;
}
//查找数组中元素e所在的索引,如果不存在元素e,则返回-1
public int find(E e) {
for(int i=0;i<data.length;i++) {
if(data[i].equals(e)) {
return i;
}
}
return -1;
}
//从数组中删除index位置的元素,返回删除的元素
public E remove(int index) {
if(index<0||index>=size) {
throw new IllegalArgumentException("Remove failed. index is illegal");
}
E res=data[index];
for(int i=index+1;i<size;i++) {
data[i-1]=data[i];
}
size--;
data[size]=null;
if(size==(data.length/2)) {
resize(data.length/2);
}
return res;
}
//从数组中删除第一个元素,返回删除的元素
public E removeFrist() {
return remove(0);
}
//从数组中删除最后一个元素,返回删除的元素
public E removeLast() {
return remove(size-1);
}
//从数组中删除元素e
public void removeElement(E e) {
int index=find(e);
if(index!=-1) {
remove(index);
}
}
public void swap(int i,int j){
if (i<0||i>=size||j<0||j>=size)
throw new IllegalArgumentException("index is illegal");
E temp=data[i];
data[i]=data[j];
data[j]=temp;
}
@Override
public String toString() {
StringBuilder res=new StringBuilder();
res.append(String.format("Array: Size %d ,Capacity: %d\n", size,data.length));
res.append('[');
for(int i=0;i<size;i++) {
res.append(data[i]);
if(i!=size-1) {
res.append(',');
}
}
res.append(']');
return res.toString();
}
}
public class MaxHeap<E extends Comparable<E>> {
private Array<E> data;
//用数组创建一个最大堆 大小为capacity
public MaxHeap(int capacity){
data=new Array<>(capacity);
}
//构造方法
public MaxHeap(){
data=new Array<>();
}
//返回堆中的元素个数
public int size(){
return data.getSize();
}
//返回一个布尔值,表示堆中是否为空
public boolean isEmpty(){
return data.isEmpty();
}
//返回完成二叉树的数组表示中,一个索引所表示的元素的父亲结点的索引
private int parent(int index){
if (index==0){
throw new IllegalArgumentException("父节点不能为0");
}
return (index-1)/2;
}
//返回完成二叉树的数组表示中,一个索引所表示的元素的左孩子结点的索引
private int leftChild(int index){
return index*2+1;
}
//返回完成二叉树的数组表示中,一个索引所表示的元素的右孩子结点的索引
private int rightChild(int index){
return index*2+2;
}
//向最大堆中添加元素
public void add(E e){
data.addLast(e);//向最后面添加元素
siftUp(data.getSize()-1);//最后的索引
}
//添加元素,上浮到合适位置
private void siftUp(int k){
//k>0添加的元素不是第一个根节点 k的父亲结点与它的孩子结点对比,大的往上浮
while(k>0&&data.get(parent(k)).compareTo(data.get(k))<0){
data.swap(k,parent(k));//交换孩子结点的值和父亲结点的值
k=parent(k);//把孩子索引变成父亲索引,方便接下来添加进来的元素与他的父亲结点比较
}
}
//看一下最大堆中的最大元素,也就是堆中的第一个元素
public E findMax(){
//如果堆中没有元素
if (data.getSize()==0){
throw new IllegalArgumentException("Heap is Empty");
}
return data.get(0);
}
//取出最大堆中的元素
public E extractMax(){
E ret=findMax();//取出最大元素
//调整堆中元素的位置
data.swap(0,data.getSize()-1);//交换最后一个元素和第一个元素的位置
data.removeLast();//删除最后一个元素
siftDown(0);//使用下沉的方法把元素放到合适的位置
return ret;
}
//取出元素 下沉到合适的位置
private void siftDown(int k){
//k结点对应的子节点没为空时
while(leftChild(k)<data.getSize()){
int j=leftChild(k);//左孩子索引
//j+1<data.getSize()判断右孩子是否存在
// data.get(j+1).compareTo(data.get(j))>0右孩子大于左孩子
if (j+1<data.getSize()&& data.get(j+1).compareTo(data.get(j))>0){
//把值下沉到右孩子
//data.swap(j+1,j);
//j++;//把左孩子索引换成右孩子索引
j=rightChild(j);//把左孩子索引换成右孩子索引
}
//data[j] 是 leftChild 和 rightChild 中的最大值
//当父节点大于孩子结点,元素下沉到合适位置了,可以结束循环了
if (data.get(k).compareTo(data.get(j))>=0){
break;
}
data.swap(k,j);//如果父节点小于孩子结点,就交换两个节点的值
k=j;//元素位置索引更新
}
}
//取出堆中最大元素,//并且替换成元素e
public E replace(E e){
E ret=data.get(0);//取出堆顶元素,返回值
data.set(0,e);//设置堆顶元素为e
siftDown(0);//下沉元素堆顶元素e
return ret;
}
}