OpenMv H7 口罩识别--毕业设计学习记录

刚开始都不知道自己的摄像头是OpenMv H7的还是OpenMv H7 Plus来的(白嫖实训室的,其实大概率猜到是H7来的,主要是不死心),后面问了一下ChatGPT。
总结大概就是:
1、都是STM32H743 主控,但是频率的MCU(480MHz vs 400MHz)和的RAM(512KB vs 320KB)不同。
2、H7 Plus具有更高分辨率的摄像头和Wi-Fi模块
3、最好方法上淘宝查一下,比问GPT快。

反正就是H7 Plus 拥有更强的性能、算力,说白了就是我没钱搞贵的,只能白嫖。
记得好像出了一个K210更厉害,之前的看别人的国赛识别数字送药小车就是用到那个。反正我没用过。

确定了自己的openmv型号,就要开始确定自己用啥方案去实现识别了,反正咋也不太会太高深的什么深度学习框架,机器学习算法,就用别人做过的方案来用就行了,还要啥自行车。让我凭空弄一个也不现实。只能拿来主义了。

这时候又要去问GPT 了。
他给了我三种方案:
1、Haar特征
2、HOG+SVM
3、TensorFlow Lite
其实我也不知道是啥玩意来的,只是知道是一些可以训练出模型,然后加载自己的图片进去,就能得出结果,知道你带不带口罩。

接下来就调合适的来实现就完事了。

### 使用OpenMV H7实现垃圾识别项目的方案 对于希望利用OpenMV H7来构建垃圾识别系统的开发者而言,理解设备性能及其图像处理能力至关重要。在OpenMV4 H7上执行特征识别检测的速度大约为每秒25帧左右[^1]。 #### 选择合适的算法技术栈 为了有效地区分不同类型的废弃物,建议采用基于颜色的空间模型——HSV(Hue, Saturation, Value),这有助于提高分类准确性并减少误判率。通过调整阈值参数,能够针对特定的颜色范围进行精准匹配[^2]。 ```python import sensor, image, time sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) # 设置摄像头增益控制以适应环境光照条件 sensor.skip_frames(time=2000) clock = time.clock() while(True): clock.tick() img = sensor.snapshot() # 定义多个可能代表不同类型垃圾的HSV色彩空间边界 thresholds = [(30, 80, -20, 20, -20, 20), (60, 90, -40, 40, -60, 60)] blobs = img.find_blobs(thresholds, pixels_threshold=200, area_threshold=200) for b in blobs: tmp=img.draw_rectangle(b.rect()) tmp=img.draw_cross(b.cx(), b.cy()) print(clock.fps()) ``` 此代码片段展示了如何设置相机模块以及定义用于区分各种材料的颜色区间;随后遍历找到的所有符合条件的对象,并在其周围绘制矩形框以便可视化展示结果。 #### 应用场景拓展 除了基本的颜色识别外,还可以进一步探索其他高级特性如形状分析或纹理特征提取等方法来增强系统的表现力。例如,在某些情况下,条形码也可能成为辅助判断物品类别的有用线索之一[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值