吴恩达机器学习练习1——单变量线性回归

机器学习 专栏收录该内容
7 篇文章 0 订阅

单变量线性回归

代价函数:

梯度下降

练习1

数据集

X代表poplation,y代表profits

数据集的可视化

function plotData(x, y)
		figure;
		data = load('ex1data1.txt');
		x = data(:,1);
		y = data(:,2);
		plot(x,y,'rx','MarkerSize',10);
		xlabel('Population of a city in 10,000s');
		ylabel('Profit in &10,000s');
end

在这里插入图片描述

代价函数

%代价函数
%computeCost.m
function J = computeCost(X, y, theta)
		m = length(y); 
		J = 0;
		h = X*theta;
		J = sum(h-y).^2/(2*m);
end

梯度下降法

%梯度下降
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
			m = length(y); 
			J_history = zeros(num_iters, 1);
			for iter = 1:num_iters
				h=X*theta;
				t1 = theta(1) - alpha*(1/m)*sum(h-y);
				t2 = theta(2) - alpha*(1/m)*sum((h-y).*X(:,2));
				theta = [t1;t2];
		    J_history(iter) = computeCostMulti(X, y, theta);
end
end

在这里插入图片描述

可视化J

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:书香水墨 设计师:CSDN官方博客 返回首页

打赏作者

cherry1307

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值