ks:能定阈值的评价指标

● 每周一言

既有工作又有生活,人生才没那么无趣。

导语

之前讲解过AUC评价指标,AUC能很好地描述模型整体性能的高低。除了AUC,还有一个指标也能达到相同的效果,那便是ks。不仅如此,ks还能给出最佳的划分阈值。那么,ks具体是什么指标?计算方式和AUC有何不同?

ks评价指标

ks(Kolmogorov-Smirnov)评价指标,通过衡量好坏样本累计分布之间的差值,来评估模型的风险区分能力。其计算方式和AUC的计算方式基本类似,我们不妨先来回顾一下评价指标必备的四个概念,如下:

  • 伪阳性率(FPR)
    判定为正例却不是真正例的比率
  • 真阳性率(TPR)
    判定为正例也是真正例的比率
  • 伪阴性率(FNR)
    判定为负例却不是真负例的比率
  • 真阴性率(TNR)
    判定为负例也是真负例的比率
    f1

AUC的计算方式在文章(如何直观理解AUC评价指标?)中描述的比较清楚,建议大家先看一遍,再继续阅读此文,会更加流畅。相比之前对AUC的讲解,上面四个概念的介绍我更新成用“比率”描述,会更加准确一点。

但是AUC只评价了模型的整体训练效果,并没有指出如何划分类别让预估的效果达到最好。

f2

ks和AUC一样,都是综合了真阳性率(TPR)和伪阳性率(FPR)两个指标来衡量模型的好坏。不同之处在于,ks取的是TPR和FPR差值的最大值

怎么理解这个最大差值?我们先仔细思考一下TPR和FPR的含义。拿二分类来说,通常接sigmoid函数输出到0-1之间取阈值划分,假定0为正例标签,1为负例标签,当阈值从0到1变化时,TPR表示所有小于阈值的正例,在所有正例中的比率。同样的,FPR则表示所有小于阈值的负例,在所有负例中的比率。

令横轴为阈值,纵轴为TPR和TPR,值域均为[0, 1]。可以这样直观理解,随着横坐标从0到1变化,TPR越快提升,模型效果越好;反之,FPR越快提升,模型效果就越差。 ks值,正是图中的最大差值,此时的横轴取值,便是最佳阈值。

f3

同样的,我们可以拿AUC讲解中的例子来直观说明ks:现假设有一个训练好的二分类器对10个正负样本(正例5个,负例5个)进行预测,得分从高到低排序得到的最好预测结果为[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],即5个正例均排在5个负例前面,正例排在负例前面的概率为100%。

绘制其ks折线。首先,我们按照之前的描述方式,绘制TPR、FPR随着阈值(样本比例)变化的折线图,如下图所示:

fig1

从上图我们可以知道,TPR提升最快而FPR提升最慢,的确说明了预测结果最好。然后,计算它们的差值,作ks折线图如下:

fig2

上图的ks值为1,最佳划分阈值是0.5,这是最理想的结果了。ks值域为[0, 1],一般情况下,ks值大于0.2就能判定模型是有效的。

为了加深理解,我们稍微改变一下预测结果序列为[1, 1, 1, 1, 0, 1, 0, 0, 0, 0],看看ks值有何不同的变化。

fig3

fig4

可知上图的ks值为0.8,最佳划分阈值为0.4或者0.6。

至此,我们便可以直观地理解ks评价指标。敬请期待下节内容。

结语

感谢各位的耐心阅读,后续文章于每周日奉上,敬请期待。欢迎大家关注小斗公众号 对半独白

face

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值