【《2021机器学习-李宏毅》学习笔记】

这篇博客整理了台湾大学李宏毅教授的2021年机器学习课程笔记,涵盖深度学习、CNN、Transformer、GAN、BERT等多个主题。课程特色为英文PPT配合中文讲解,内容直观易懂,适合不同层次的学习者。笔记详尽且结构清晰,方便查阅和学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

  • 台湾大学李宏毅老师开设的《机器学习》近年来广受好评,成为国内众多深度学习/人工智能的学生/爱好者的 入门第一课。-虽然课程名叫“机器学习”,但是内容中传统机器学习并不多,主要还是深度学习的内容。
  • 2021年,课程内容全面升级,课程网站、授课内容、进度安排、视频质量较先前的版本都有了较大的提升。
    主要特点:
    • 英文PPT,中文讲授,既能够了解相关术语的英文表达,又不会在学习的时候因语言壁垒而出现困难。
    • 课程讲解思路清晰、生动有趣、案例丰富、深入浅出,摒弃复杂的数学内容,集中展示“直观的认识”。
    • 课程资料中保留了大量参考文献,适合于深耕某一领域的从业者,也保留了大量实用的样例代码,能够在简单地魔改以后应用到别的任务中,适合于各种水平层次的入门!

主要参考资料:

内容示意

在这里插入图片描述

在这里插入图片描述

个人学习笔记

鉴于个人习惯,本人将学习笔记记录在notion上。以下是跳转至各篇笔记的链接。

01-Regression

https://diamond-mule-bee.notion.site/01-Regression-db3f17ba626a43668e016d09d39e35e5

02.1-deeplearning-general_guidance

https://diamond-mule-bee.notion.site/02-1-DeepLearning-General-Guidance-9e355df2c60d45b48038304cf122d103

02.2-deeplearning-类神经网络优化技巧

https://diamond-mule-bee.notion.site/02-2-DeepLearning-25ed6d30c1ee446e964bbe2fddc5220f

02.3-deeplearning-loss_of_classification

https://diamond-mule-bee.notion.site/02-3-DeepLearning-Loss-of-Classification-b6ffdac5af43440bbd703d9521046bd4

03-CNN

https://diamond-mule-bee.notion.site/03-CNN-91e08c7b29e1446fb363f881f21f9287

04-Self-attention

https://diamond-mule-bee.notion.site/04-Self-attention-47c5c10105794b8f939b01c65885ef5b

05-Transformer

https://diamond-mule-bee.notion.site/05-Transformer-885ecb94414c436692f7bb12bdc609aa

06-Generative_Model(GAN)

https://diamond-mule-bee.notion.site/06-Generative-Model-GAN-b31049277b334c94b3dea56235700460

07-Self-Supervised_Learning(BERT)

https://diamond-mule-bee.notion.site/07-Self-Supervised-Learning-BERT-fffe64d9c1ec4200a2db33ba911a24c4

08-Auto-encoder

https://diamond-mule-bee.notion.site/08-Auto-encoder-57c07342cd7642298e897d0ad04aa502

09-Adversarial_Attack

https://diamond-mule-bee.notion.site/09-Adversarial-Attack-125d90a904ab4c7ab4db7162c9f1cbea

10-Explainable_AI

https://diamond-mule-bee.notion.site/10-Explainable-AI-9ea7e4815dfb4c94bff3e8dd596ded42

11-Domain_Adaptation

https://diamond-mule-bee.notion.site/11-Domain-Adaptation-c6f428ddbe264c878b2fa8bdf2d124dd

12-Reinforcement_Learning(RL)

https://diamond-mule-bee.notion.site/12-Reinforcement-Learning-RL-00c5c8c0e77749e3add1726525467ff5

13-Life_Long_Learning(LLL)

https://diamond-mule-bee.notion.site/13-Life-Long-Learning-LLL-120a6afa51a84f238a3f59a926ae082d

14-Compression

https://diamond-mule-bee.notion.site/14-Compression-523b9ce9e62640aab94d2e82dc975923

15-Meta_Learning(元学习)

https://diamond-mule-bee.notion.site/15-Meta-Learning-b98f8168d4044ad783b6241acd4e666a

16-总结

https://diamond-mule-bee.notion.site/16-c6364089b256467b98f3aa1c025d51b6

李宏毅的2020机器学习笔记中,有一个关于注意力机制(Attention)的部分。这部分内容主要介绍了生成模型(Generation)、注意力(Attention)、生成的技巧(Tips for Generation)以及指针网络(Pointer Network)。在生成模型中,主要讲述了如何生成一个有结构的对象。接下来介绍了注意力机制,包括一些有趣的技术,比如图片生成句子等。在生成的技巧部分,提到了一些新的技术以及可能遇到的问题和偏差,并给出了相应的解决方案。最后,稍微提到了强化学习。其中还提到了在输出"machine"这个单词时,只需要关注"机器"这个部分,而不必考虑输入中的"学习"这个部分。这样可以得到更好的结果。另外,还提到了关于产生"ei"的方法,其中有研究应用了连续动态模型自注意力(Self-attention)来学习位置编码的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2020李宏毅机器学习笔记-Condition Generation by RNN&Attention](https://blog.csdn.net/zn961018/article/details/117593813)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [李宏毅机器学习学习笔记:Self-attention](https://blog.csdn.net/weixin_44455827/article/details/128094176)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值