AI运维 | 智能运维落地,AIOps 能为企业做什么?

AIOps(Algorithmic IT Operations)通过机器学习和大数据技术,自动发现IT系统异常,简化运维工作,实现故障预防。相比传统监控式运维,AIOps更关注问题分析和预测,提升IT效率。
摘要由CSDN通过智能技术生成

当 IT 维护集中在公司内部桌面、OA、邮件、财务、人事等系统的时候,即使5~10分钟的故障修复时间,也可以让 IT 人员“组团”天台抽根烟。

当 IT 维护集中在 ERP、WMS、PLM 等和生产密切相关的系统时,基于生产线的特殊性,运维人员只有“亚历山大”、“周末无休”一条暗无天日的路可走吗?

非也!!!

 

AIOps 是什么?为什么要用 AIOps?结合上面疑问,我们详细解析一下——

AIOps 是一种基于算法的 IT 运维(Algorithmic IT Operations),是由 Gartner 定义的新类别,源自业界之前所说的 ITOA(IT Operations and Analytics)。

Gartner 报告预测,到2020年,将近50%的企业将会在其业务和 IT 运维方面采用 AIOps,远远高于今天的10%。


 

 

机器学习,简化运维

作为一种将算法集成到工具里的新型运维方式,AIOps 可以帮助企业最大程度的简化运维工作,把 IT 从耗时又容易出错的流程中解放出来。

有了 AIOps,当 IT 出现故障隐患,运维人员不需要再等待系统发出故障告警,通过内置的机器学习算法以及大数据技术,就能自动发现系统的各类异常,从而实现从异常入手判断故障发生的可能性、严重性和影响,依赖机器对数据的分析结果,判断最佳的应对方案。

 

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

两大算法,提升管理

AIOps 依赖于机器学习(Machine Learning)。那么,机器学习的哪些算法有助于提升 AIOps 的管理效果呢?

聚类算法

聚类(Cluster):聚类算法,通俗理解即合并同类项。但是这个合并是要在一定的规则下进行合并。

在海量数据中,聚类操作可以最大限度的压缩结果集的数量,使异常更容易被系统识别。因此,聚类算法经常会被用于对海量未知数据的探索和分析。

回归算法

回归(Regression):回归算法,顾名思义,就是通过将现有的数据总量、类型、内容以及变化趋势和历史数据进行比对,由此发现异常的数据量、异常的数据类型、异常的内容以及异常的变化趋势。回归算法又分为逻辑回归(Logistic Regression)和线性回归(Linear Regression)两种,基于回归算法的这种特性, AIOps 通常会利用回归算法来进行趋势预测。

其他算法

其它算法:除了聚类和回归这两种主要的机器学习算法,AIOps中通常还会包括随机森林(Random Forrest),物质扩散和热传导算法(Heat Spreading),离群点检测(Outlier Detection)以及时间序列算法等等。

对 IT 运维人员而言,当一条告警被确认的时候,不但意味着你第一时间发现了业务故障,更意味着在故障发生的这一刻,业务已经受到了影响。而随着 AIOps 的出现,IT 部门可以通过机器学习和算法技术,事先发现 IT 系统的运行异常,提前进行故障的防范甚至规避措施,确保业务故障不出现或者少出现,这些对于 IT 和业务部门来说意义重大。

 

转载于:https://my.oschina.net/u/4026621/blog/3069432

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值