神经网络深度学习(四)特征处理

目录

一、为什么需要对特征进行归一化

二、常见归一化方法

2.1 归一化方法分类

2.1 常见归一化方法

1 线性比例变换法 

2 min/max归一化

3 均值标准化

4 分位数归一化

三、Batch Normalization

四、特征异常值处理


一、为什么需要对特征进行归一化

原因:消除数据特征之间的量纲影响,加速模型收敛,提高模型泛化能力。

适用模型:比如线性回归、逻辑回归、支持向量机、神经网络等模型,而决策树模型中则不需要归一化处理。

二、常见归一化方法

2.1 归一化方法分类

特征取值归一化到[0,1]区间。常用的归一化方法包括

a). 函数归一化:通过映射函数将特征取值映射到[0,1]区间,例如最大最小值归一化方法,是一种线性的映射。还有通过非线性函数的映射,例如log函数等。

b). 分维度归一化:可以使用最大最小归一化方法,但是最大最小值选取的是所属类别的最大最小值,即使用的是局部最大最小值,不是全局的最大最小值。

c). 排序归一化:不管原来的特征取值是什么样的,将特征按大小排序,根据特征所对应的序给予一个新的值。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值