营销定价系列(三)--- 运筹优化技术

线性规划问题解法

        单纯形法、内点法(大M、两阶段法)、列生成法

        有约束问题: 拉格朗日对偶法

对比总结

方法 时间复杂度 核心思想 优势场景 局限性
单纯形法 指数级(最坏) 凸多面体(可行域)的顶点之间迭代移动,逐步逼近最优解 中小规模、需灵敏度分析 高维问题效率骤降
内点法 多项式 O(n3.5) 从可行域内部逼近最优解,适合大规模问题。 大规模稠密问题、高精度需求 实现复杂,需处理数值稳定性
列生成法 伪多项式(依赖子问题) 列生成法基于主问题-子问题分解框架,结合对偶理论,初始仅包含部分变量,求解松弛后的线性规划问题。通过分析主问题的对偶变量,生成能改进目标函数的新变量

当变量数目大于约束条件数时,需要使用列生成算法。变量指数级增长的组合优化问题

下料问题

子问题需高效求解,收敛速度不定

单纯形法

设置不同的基向量,经过矩阵的线性变换,求得基可行解(可行域顶点),并判断该解是否最优,否则继续设置另一组基向量,重复执行以上步骤,直到找到最优解。

单纯形法中的大M法(Big M Method)两阶段法(Two-Phase Method)是两种处理无初始基可行解的线性规划问题的技术,常用于解决包含等式约束或无法直接构造可行基的情况。

大M法

        在目标函数中为人エ变量赋予一个极大正数 M(最大化问题中系数为 -M,最小化问题中为 +M),迫使这些变量在优化过程中被排除(取值为0)。

两阶段法

        第一阶段:构造辅助问题,目标是最小化人工变量的总和,找到初始基可行解;第二阶段:使用第一阶段的结果,求解原问题。

两阶段法通过分阶段验证可行性和求解原问题,规避了大M法的数值不稳定缺陷,适合工程计算与复杂问题‌;而大M法流程简洁,更适合小规模或人工计算场景,但对M值敏感‌。两者本质目标一致(处理无初始基问题),但实现路径与适用性不同。

检验数

检验数‌是线性规划中‌单纯形法‌的核心概念,用于判断当前基本可行解是否最优,并指导迭代方向。

列生成法

Column Generation是一种用于求解大规模线性优化问题的非常高效的算法[3],其理论基础是由Danzig等于1960年提出。本质上而言,列生成算法就是单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值