- PCA 主成分分析
m个n维的样本数据 X1,X2,...,Xm , 均值为u
步骤:
(1)标准化, Xi−u
(2)计算协方差矩阵
PCA,ICA和CCA(markdown)
最新推荐文章于 2024-08-28 07:00:00 发布
PCA(主成分分析)通过标准化、计算协方差矩阵及特征值来减少数据维度,选择最大特征值的特征向量进行线性变换。ICA(独立成分分析)用于恢复观测信号的独立源,关键在于找到使得成分独立的线性变换矩阵W。CCA(典型相关分析)则关注两个变量集之间的最大相关性。这些方法广泛应用于信号处理和数据分析。
摘要由CSDN通过智能技术生成