PCA,ICA和CCA(markdown)

PCA(主成分分析)通过标准化、计算协方差矩阵及特征值来减少数据维度,选择最大特征值的特征向量进行线性变换。ICA(独立成分分析)用于恢复观测信号的独立源,关键在于找到使得成分独立的线性变换矩阵W。CCA(典型相关分析)则关注两个变量集之间的最大相关性。这些方法广泛应用于信号处理和数据分析。
摘要由CSDN通过智能技术生成
  1. PCA 主成分分析
    m个n维的样本数据 X1,X2,...,Xm , 均值为u
    步骤:
    (1)标准化, Xiu
    (2)计算协方差矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值