应用于SSVEP脑电信号识别的CCA算法

应用于SSVEP脑电信号识别的CCA算法

1、SSVEP信号

SSVEP是指当受到一个固定频率的视觉刺激的时候,人的大脑视觉皮层会产生一个连续的与刺激频率有关(刺激频率的基频或倍频处)的响应。

研究者认为大脑里分布的各种神经网络都有其固有的谐振频率,在正常状态下,这些神经网络都是互不同步的,也是杂乱无章,没有规律的,此时的脑电信号是自发脑电。当施加一个恒定频率的外界视觉刺激时,与刺激频率或谐波频率相一致的神经网络就会产生谐振,导致大脑的电位活动在刺激频率或谐波频率处出现明显变化,由此产生了SSVEP 信号

大脑皮层可粗略地看作由额叶(Frontal lobe)顶叶(Parietal lobe)枕叶(Occipital lobe)颞叶(Temporal lobe)四个组成部分构成。其中额叶部分负责运动和理解、顶叶部分负责触觉与空间的空间感知、而枕叶部分负责视觉、颞叶部分负责听力与语言。因此,基于SSVEP的BCI系统就是通过检测枕叶视觉区的的EEG信号来判断大脑的思维活动的。
在这里插入图片描述

SSVEP信号可以可靠地应用于脑-机接口系统(BCIs)。相对于给予其他信号(例如P300、运动想象)的BCIs而言,基于SSVEP信号的BCIs通常具有更高的信息传输率,系统和实验设计更加简便,而且需要的训练次数也比较少。

2、应用于SSVEP信号的CCA算法

目前已经有不少科研小组设计出了具有高传输速率(ITR)的SSVEPBCIs,而其中用于对SSVEP信号处理分析的方法之一,即为本文所要介绍的典型相关性分析(Canonical Correlation Anaylsis,CCA)算法。

CCA主要通过计算两组信号的典型相关系数来分析SSVEP信号。其中一组信号是记录的EEG信号 X = [ x 1 , x 2 , … , x n ] X=[x_1,x_2,…,x_n] X=[x1,x2,,xn],其中采集脑电信号的通道数。另一组信号是视觉刺激频率相对应的参考信号 Y i Y_i Yi

在这里插入图片描述
其中, i i i是刺激目标数, f i f_i fi表示刺激频率, k k k表示参考信号中的谐波数, N s N_s Ns表示采样点数量。考虑到人的大脑是一个低通滤波器,高频信号基本上被过滤掉了,这里取 k = 3 k=3 k=3,由此
在这里插入图片描述
X X X Y i Y_i Yi的线性组合可以表示为 x = X T W X x=X^T W_X x=XTWX y = Y T W Y y=Y^T W_Y y=YTWY,其中 W X W_X WX W Y W_Y WY是权重矩阵。由此 x x x对应于第 i i i种刺激对应参考信号的相关系数为:

在这里插入图片描述
K K K表示刺激频率数目从而最终识别的目标频率为:
f_s=max┬fi⁡〖ρ(f_i)〗,i=1,2,…,K
实现代码: https://github.com/YuDongPan/Canonical_Classifier

参考资料与文献:

  1. SSVEP——百度百科
  2. CSDN博客稳态视觉诱发电位SSVEP介绍——CSDN博客
  3. Z. Lin, C. Zhang, W. Wu and X. Gao, “Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs,” in IEEE Transactions on Biomedical Engineering, vol. 53, no. 12, pp. 2610-2614, Dec. 2006, doi: 10.1109/TBME.2006.886577.
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值