对抗学习的半监督语义分割

<font color="red">GAN生成对抗网络:</font>由两个子网络组成,generator和discriminator,在训练过程中,这两个子网络进行着最小最大值机制,generator用随机向量输出一个目标数据分布的样例,discriminator从目标样例中区分出生成器生成的样例。generator通过后向传播混淆discriminator,依此generator生成与目标样例相似的样例。

<font color="red">这篇论文中,</font>将generator换成一个分割网络(可以是任意形式的分割网络,如:FCN,DeepLab,DilatedNet……,输入是H*W*3,依次是长宽,通道数,输出概率图为H*W*C,其中C是语义种类数),这个网络对输入的图片分割输出一个概率图,使得输出的概率图尽可能的接近ground truth。其中discriminator采用了全卷积网络(输入为generator或ground truth得到的概率图,输出位空间概率图H*W*1,其中其中像素点p代表这个来自gournd truth(p=1)还是generator(p=0))。

训练中,用半监督机制,一部分是注解数据,一部分是无注解数据。 **当用有注解数据时,**分割网络由基于ground truth的标准交叉熵损失和基于鉴别器的对抗损失共同监督。注意,训练discriminator只用标记数据。

**当用无注解数据时,**用半监督方法训练分割网络,在从分割网络中获取未标记图像的初始分割预测后,通过判别网络对分割预测进行传递,得到一个置信图。我们反过来将这个置信图作为监督信号,使用一个自学机制来训练带masked交叉熵损失的分割网络。置信图表示了预测分割的质量。

对抗网络的半监督训练

输入图像$x_n$大小为HW3, 分割网络表示为$s(·)$,预测概率图为$s(x_n)$大小为HWC。全卷积discriminator表示为$D(·)$,其输入有两种形式:分割预测$s(x_n)$和one-hot编码的gournd truth $Y_n$.

训练discriminator网络:

最小化空间交叉熵损失$L_D$,其表示为: $$L_D=-\sum_{h,w} (1-y_n)log(1-(s(x_n))^{(h,w)})+y_nlog(D(Y_n)^{(h,w)})$$ 当输入来自分割网络时$y_n=0$,若来自ground truth则为$y_n=1$. 为了将ground truth转换为C通道的概率图,我们用one-hot机制进行编码,即如果像素$x_n^{(h,w)}$输入类C,则取1,否则为0.

训练分割网络:

这里使用的损失是多任务损失: $$L_seg=L_{ce}+λ_{adv}L_{adv}+λ_{semi}L_{semi}$$ 其中$L_{ce}$,$L_{adv}$和$L_{semi}$分别代表 multi-class cross entropy loss, the adversarial loss,和the semi-supervised loss,这里的$λ_{adv}$和$λ_{semi}$. 这里先考虑用有注解的数据,则: $$L_{ce}=-\sum_{h,w}\sum_{c\epsilon{C}}Y_n^{(h,w,c)}log(s(x_n)^{(h,w,c)})$$ $L_{adv}$表示为: $$L_{adv}=-\sum_{h,w}log(D(S(X_N))^{(h,w)})$$

用无标签数据训练

由于没有ground truth,因此这里不能使用$L_{ce}$,这里提出了用自学机制在无注解数据中利用被训练的discriminator,大意是被训练的discriminator可以生成一个置信图,即$D(S(X_n))^{(h,w)}$,这个公式用来推断预测结构足够接近gournd truth的区域。这里用一个阈值来二值化置信图,$\hat{Y}=argmax(s(x_n))$,使用二值化置信图,半监督损失可以定义为: $$L_{semi}=-\sum_{h,w}\sum_{c\epsilon{C}}I(D(S(x_n))^{(h,w)}>T_{semi)}\bullet\hat{Y}n^{(h,w,c)}log(s(x_n)^{(h,w,c)})$$ 其中$I(\bullet)$是指示函数,$T{semi}$是阈值,注意在训练期间,自学目标值$\hat{Y}_n$和指示函数的值为常量,因此上式可以简单看做空间交叉熵损失。

转载于:https://my.oschina.net/u/3837179/blog/1921107

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值