极大平面图

一 特殊平面图

1 极大平面图及其性质

极大平面图的两种情况,一种是K1到K4四种特殊情况,即1阶到4阶的完全图是极大可平面图

另一种就是一般的情况,任意非邻接顶点间添加一条边后,得到的图均是非可平面图。

 

 

 

 

 

 

二、平面图的对偶图

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

为了帮助你理解极大平面图的判定方法以及它与极大平面图之间的区别,你可以参考这份资源:《电子科技大学图论作业3:填空与选择题详解》。这份资料由经验丰富的王老师分发,针对电子科技大学图论课程设计,包含填空题和不定项选择题,专门巩固图论的核心概念。 参考资源链接:[电子科技大学图论作业3:填空与选择题详解](https://wenku.csdn.net/doc/5i37ce2er5?spm=1055.2569.3001.10343) 判断一个图是否为极大平面图,首先需要理解平面图的概念。一个图如果可以画在平面上,使得任何两条边都不相交,那么它就是一个平面图极大平面图是指在给定的顶点数和边数下,不能再加入新的边而形成新的面,同时保持图的平面性。判定极大平面图的一个常用方法是使用库拉托夫斯基定理,它指出一个图是极大平面图当且仅当它既不是可以划分为两个更小的非平凡连通分量的连通图,也不是K5或K3,3的细分。此外,极大平面图的面数等于顶点数减去边数加上两个连通分支数。而极大平面图,是一种特殊的平面图,它的边界构成一个外部面,且其他面都位于这个外部面内部,其内部面数与外部面数相等,且面数等于顶点数减1。 在实际应用中,通过构建图的平面嵌入,数出面的数量,并应用欧拉公式(V-E+F=2,其中V是顶点数,E是边数,F是面数)可以帮助我们判断一个图是否为极大平面图。同时,通过对图的结构进行分析,比如识别是否存在K5或K3,3的结构,可以进一步确认图的性质。而极大平面图的判定,需要确认图形的嵌入是否满足内部面数等于外部面数且都位于同一边界内的特点。通过这些方法,你可以有效地识别极大平面图极大平面图,并理解它们的性质和区别。 在掌握了图论中的极大平面图概念后,若希望更深入地研究图的平面嵌入、欧拉公式以及库拉托夫斯基定理等高级主题,建议继续查阅《电子科技大学图论作业3:填空与选择题详解》。这份资料不仅能帮助你解决当前问题,还包含了一系列的图论练习题,让你在实践中不断提高图论分析能力。 参考资源链接:[电子科技大学图论作业3:填空与选择题详解](https://wenku.csdn.net/doc/5i37ce2er5?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值