- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
cv::cuda::createDerivFilter 是 OpenCV CUDA 模块中的一个工厂函数,用于创建一个计算图像导数的滤波器。这个滤波器可以用来计算图像在 x 方向和 y 方向上的任意阶导数。它特别适用于边缘检测、特征提取等计算机视觉任务。
函数原型
cv::Ptr<cv::cuda::Filter> cv::cuda::createDerivFilter
(
int srcType,
int dstType,
int dx,
int dy,
int ksize,
bool normalize = false,
double scale = 1,
int rowBorderMode = cv::BORDER_DEFAULT,
int columnBorderMode = -1
);
参数
参数名 | 类型 | 描述 |
---|---|---|
srcType | int | 输入图像类型,例如 CV_8UC1, CV_32FC1 等。 |
dstType | int | 输出图像类型,通常与输入类型相同或根据需求指定。 |
dx | int | x方向上的导数阶数(0表示不计算x方向导数)。 |
dy | int | y方向上的导数阶数(0表示不计算y方向导数)。 |
ksize | int | 使用的Sobel核大小(必须是奇数且大于1),例如3, 5, 7等。 |
normalize | bool | 是否对结果进行归一化处理,默认为 false。 |
scale | double | 计算导数值时的缩放因子,默认为 1。 |
rowBorderMode | int | 行方向上的边界填充模式,默认为 cv::BORDER_DEFAULT。 |
columnBorderMode | int | 列方向上的边界填充模式,默认使用 rowBorderMode 的值(即 -1)。 |
代码示例
include <opencv2/cudafilters.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>
int main()
{
// 读取灰度图像
cv::Mat h_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
if ( h_img.empty() )
{
std::cerr << "Error: Image not found!" << std::endl;
return -1;
}
// 上传到 GPU
cv::cuda::GpuMat d_src, d_dst_x, d_dst_y;
d_src.upload(h_img);
// 创建x方向导数滤波器(ksize=3)
cv::Ptr<cv::cuda::Filter> derivXFilter = cv::cuda::createDerivFilter(
d_src.type(), // 输入类型(CV_8UC1)
CV_32FC1, // 输出类型(浮点数类型更合适)
1, // dx = 1 表示计算x方向一阶导数
0, // dy = 0 不计算y方向导数
3 // Sobel核大小
);
// 应用x方向导数滤波器
derivXFilter->apply(d_src, d_dst_x);
// 创建y方向导数滤波器(ksize=3)
cv::Ptr<cv::cuda::Filter> derivYFilter = cv::cuda::createDerivFilter(
d_src.type(), // 输入类型(CV_8UC1)
CV_32FC1, // 输出类型(浮点数类型更合适)
0, // dx = 0 不计算x方向导数
1, // dy = 1 表示计算y方向一阶导数
3 // Sobel核大小
);
// 应用y方向导数滤波器
derivYFilter->apply(d_src, d_dst_y);
// 下载结果回 CPU
cv::Mat h_dst_x_f, h_dst_y_f; // 浮点数结果
d_dst_x.download(h_dst_x_f);
d_dst_y.download(h_dst_y_f);
// 归一化处理以便显示
cv::Mat h_dst_x_8u, h_dst_y_8u; // 用于显示的8位无符号整数结果
cv::normalize(h_dst_x_f, h_dst_x_8u, 0, 255, cv::NORM_MINMAX, CV_8U);
cv::normalize(h_dst_y_f, h_dst_y_8u, 0, 255, cv::NORM_MINMAX, CV_8U);
// 显示原始图像及导数图像
cv::imshow("Original", h_img);
cv::imshow("X Direction Derivative", h_dst_x_8u);
cv::imshow("Y Direction Derivative", h_dst_y_8u);
cv::waitKey(0);
return 0;
}