OpenCV CUDA 模块图像过滤-----创建一个计算图像导数的滤波器函数createDerivFilter()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::createDerivFilter 是 OpenCV CUDA 模块中的一个工厂函数,用于创建一个计算图像导数的滤波器。这个滤波器可以用来计算图像在 x 方向和 y 方向上的任意阶导数。它特别适用于边缘检测、特征提取等计算机视觉任务。

函数原型

cv::Ptr<cv::cuda::Filter> cv::cuda::createDerivFilter
(
    int srcType,
    int dstType,
    int dx,
    int dy,
    int ksize,
    bool normalize = false,
    double scale = 1,
    int rowBorderMode = cv::BORDER_DEFAULT,
    int columnBorderMode = -1
);

参数

参数名类型描述
srcTypeint输入图像类型,例如 CV_8UC1, CV_32FC1 等。
dstTypeint输出图像类型,通常与输入类型相同或根据需求指定。
dxintx方向上的导数阶数(0表示不计算x方向导数)。
dyinty方向上的导数阶数(0表示不计算y方向导数)。
ksizeint使用的Sobel核大小(必须是奇数且大于1),例如3, 5, 7等。
normalizebool是否对结果进行归一化处理,默认为 false。
scaledouble计算导数值时的缩放因子,默认为 1。
rowBorderModeint行方向上的边界填充模式,默认为 cv::BORDER_DEFAULT。
columnBorderModeint列方向上的边界填充模式,默认使用 rowBorderMode 的值(即 -1)。

代码示例

include <opencv2/cudafilters.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 读取灰度图像
    cv::Mat h_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( h_img.empty() )
    {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src, d_dst_x, d_dst_y;
    d_src.upload(h_img);

    // 创建x方向导数滤波器(ksize=3)
    cv::Ptr<cv::cuda::Filter> derivXFilter = cv::cuda::createDerivFilter(
        d_src.type(),   // 输入类型(CV_8UC1)
        CV_32FC1,       // 输出类型(浮点数类型更合适)
        1,              // dx = 1 表示计算x方向一阶导数
        0,              // dy = 0 不计算y方向导数
        3               // Sobel核大小
    );

    // 应用x方向导数滤波器
    derivXFilter->apply(d_src, d_dst_x);

    // 创建y方向导数滤波器(ksize=3)
    cv::Ptr<cv::cuda::Filter> derivYFilter = cv::cuda::createDerivFilter(
        d_src.type(),   // 输入类型(CV_8UC1)
        CV_32FC1,       // 输出类型(浮点数类型更合适)
        0,              // dx = 0 不计算x方向导数
        1,              // dy = 1 表示计算y方向一阶导数
        3               // Sobel核大小
    );

    // 应用y方向导数滤波器
    derivYFilter->apply(d_src, d_dst_y);

    // 下载结果回 CPU
    cv::Mat h_dst_x_f, h_dst_y_f; // 浮点数结果
    d_dst_x.download(h_dst_x_f);
    d_dst_y.download(h_dst_y_f);

    // 归一化处理以便显示
    cv::Mat h_dst_x_8u, h_dst_y_8u; // 用于显示的8位无符号整数结果
    cv::normalize(h_dst_x_f, h_dst_x_8u, 0, 255, cv::NORM_MINMAX, CV_8U);
    cv::normalize(h_dst_y_f, h_dst_y_8u, 0, 255, cv::NORM_MINMAX, CV_8U);

    // 显示原始图像及导数图像
    cv::imshow("Original", h_img);
    cv::imshow("X Direction Derivative", h_dst_x_8u);
    cv::imshow("Y Direction Derivative", h_dst_y_8u);
    cv::waitKey(0);
    
    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值