主成分分析(Principal components analysis)

PCA(主成分分析)是一种线性降维方法,旨在通过最大化投影后的方差来保留数据的主要特性。它包括计算协方差矩阵、特征值和特征向量,选择最大特征值对应的特征向量作为主成分。PCA适用于数据预处理,减少特征维度,但可能不适用于分类任务,因为它不考虑类别区分性。
摘要由CSDN通过智能技术生成

1.PCA理论介绍       

    Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的

空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。

    通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差

尽可能的大,那么数据点则会分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。

(实际上就是最接近原始数据,但是PCA并不试图去探索数据内在结构)

    在具体介绍PCA之前,先来了解一下协方差矩阵的概念。

    协方差总是在两维数据之间进行度量,如果我们具有超过两维的数据,将会有多于两个的协方差。例如对于三维数据(x, y, z维),需要计算cov(x,y),cov(y,z)和cov(z,x)。获得所有维数之间协方差的方法是计算协方差矩阵。维数据协方差矩阵的定义为

    这个公式告诉我们,如果我们有一个n维数据,那么协方差矩阵就是一个n行n列的方矩阵,矩阵的每一个元素是两个不同维数据之间的协方差。

对于一个3维数据(x,y,z),协方差矩阵有3行3列,它的元素值为:


协方差定义为:
COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY        其中,E是期望值。

需要注意的是:沿着主对角线,可以看到元素值是同一维数据之间的协方差,这正好是该维数据的方差。对于其它元素,因为cov(a,b)=cov(b,a),所以协方差矩阵是关于主对角线对称的。

     在介绍了协方差矩阵的概念后,我们来看一下PCA的计算过程:

    1)获取数据

    2)减去均值

    3)计算协方差矩阵

    4)计算协方差矩阵的特征矢量和特征值

    5)选择特征值最大的K个特征值对应的特征向量作为主成分

    6)用主成分矩阵乘以原始数据得到降维后的数据

      

    举例说明:     

    假设我们得到的2维数据如下:

     

clip_image001[4]

    行代表了样例,列代表特征,这里有10个样例,每个样例两个特征。可以这样认为,有10篇文档,x是10篇文档中“learn”出

现的TF-IDF,y是10篇文档中“study”出现的TF-IDF。也可以认为有10辆汽车,x是千米/小时的速度,y是英里/小时的速度等。

    第一步分别求x和y的平均值,然后对于所有的样例,都减去对应的均值。这里x的均值是1.81,y的均值是1.91,那么一个样例

减去均值后即为(0.69,0.49),得到

     

clip_image002[4]

     第二步,求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

     

clip_image003[4]

     这里只有x和y,求解得

     

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值